diff --git a/yudao-module-ai/yudao-module-ai-biz/src/main/java/cn/iocoder/yudao/module/ai/service/knowledge/DocService.java b/yudao-module-ai/yudao-module-ai-biz/src/main/java/cn/iocoder/yudao/module/ai/service/knowledge/DocService.java new file mode 100644 index 000000000..2e7f792e8 --- /dev/null +++ b/yudao-module-ai/yudao-module-ai-biz/src/main/java/cn/iocoder/yudao/module/ai/service/knowledge/DocService.java @@ -0,0 +1,16 @@ +package cn.iocoder.yudao.module.ai.service.knowledge; + +/** + * AI 知识库 Service 接口 + * + * @author xiaoxin + */ +public interface DocService { + + + /** + * 向量化文档 + */ + void embeddingDoc(); + +} diff --git a/yudao-module-ai/yudao-module-ai-biz/src/main/java/cn/iocoder/yudao/module/ai/service/knowledge/DocServiceImpl.java b/yudao-module-ai/yudao-module-ai-biz/src/main/java/cn/iocoder/yudao/module/ai/service/knowledge/DocServiceImpl.java new file mode 100644 index 000000000..eeffebf44 --- /dev/null +++ b/yudao-module-ai/yudao-module-ai-biz/src/main/java/cn/iocoder/yudao/module/ai/service/knowledge/DocServiceImpl.java @@ -0,0 +1,44 @@ +package cn.iocoder.yudao.module.ai.service.knowledge; + +import jakarta.annotation.Resource; +import lombok.extern.slf4j.Slf4j; +import org.springframework.ai.document.Document; +import org.springframework.ai.reader.tika.TikaDocumentReader; +import org.springframework.ai.transformer.splitter.TokenTextSplitter; +import org.springframework.ai.vectorstore.RedisVectorStore; +import org.springframework.beans.factory.annotation.Value; +import org.springframework.stereotype.Service; + +import java.util.List; + +/** + * AI 知识库 Service 实现类 + * + * @author xiaoxin + */ +@Service +@Slf4j +public class DocServiceImpl implements DocService { + + @Resource + RedisVectorStore vectorStore; + @Resource + TokenTextSplitter tokenTextSplitter; + + // TODO @xin 临时测试用,后续删 + @Value("classpath:/webapp/test/Fel.pdf") + private org.springframework.core.io.Resource data; + + + @Override + public void embeddingDoc() { + // 读取文件 + org.springframework.core.io.Resource file = data; + TikaDocumentReader loader = new TikaDocumentReader(file); + List documents = loader.get(); + // 文档分段 + List segments = tokenTextSplitter.apply(documents); + // 向量化并存储 + vectorStore.add(segments); + } +} diff --git a/yudao-module-ai/yudao-spring-boot-starter-ai/pom.xml b/yudao-module-ai/yudao-spring-boot-starter-ai/pom.xml index 4aa6273cf..95895e9b0 100644 --- a/yudao-module-ai/yudao-spring-boot-starter-ai/pom.xml +++ b/yudao-module-ai/yudao-spring-boot-starter-ai/pom.xml @@ -40,6 +40,28 @@ ${spring-ai.version} + + org.springframework.ai + spring-ai-transformers-spring-boot-starter + ${spring-ai.version} + + + org.springframework.ai + spring-ai-tika-document-reader + ${spring-ai.version} + + + org.springframework.ai + spring-ai-redis-store + ${spring-ai.version} + + + org.springframework.data + spring-data-redis + true + + + cn.iocoder.boot yudao-common diff --git a/yudao-module-ai/yudao-spring-boot-starter-ai/src/main/java/cn/iocoder/yudao/framework/ai/config/YudaoAiAutoConfiguration.java b/yudao-module-ai/yudao-spring-boot-starter-ai/src/main/java/cn/iocoder/yudao/framework/ai/config/YudaoAiAutoConfiguration.java index 05a317294..58340d45d 100644 --- a/yudao-module-ai/yudao-spring-boot-starter-ai/src/main/java/cn/iocoder/yudao/framework/ai/config/YudaoAiAutoConfiguration.java +++ b/yudao-module-ai/yudao-spring-boot-starter-ai/src/main/java/cn/iocoder/yudao/framework/ai/config/YudaoAiAutoConfiguration.java @@ -10,11 +10,18 @@ import cn.iocoder.yudao.framework.ai.core.model.xinghuo.XingHuoChatModel; import cn.iocoder.yudao.framework.ai.core.model.xinghuo.XingHuoChatOptions; import com.alibaba.cloud.ai.tongyi.TongYiAutoConfiguration; import lombok.extern.slf4j.Slf4j; +import org.springframework.ai.autoconfigure.vectorstore.redis.RedisVectorStoreProperties; +import org.springframework.ai.document.MetadataMode; +import org.springframework.ai.transformer.splitter.TokenTextSplitter; +import org.springframework.ai.transformers.TransformersEmbeddingModel; +import org.springframework.ai.vectorstore.RedisVectorStore; import org.springframework.boot.autoconfigure.AutoConfiguration; import org.springframework.boot.autoconfigure.condition.ConditionalOnProperty; +import org.springframework.boot.autoconfigure.data.redis.RedisProperties; import org.springframework.boot.context.properties.EnableConfigurationProperties; import org.springframework.context.annotation.Bean; import org.springframework.context.annotation.Import; +import redis.clients.jedis.JedisPooled; /** * 芋道 AI 自动配置 @@ -73,4 +80,33 @@ public class YudaoAiAutoConfiguration { return new SunoApi(yudaoAiProperties.getSuno().getBaseUrl()); } + // ========== rag 相关 ========== + @Bean + public TransformersEmbeddingModel transformersEmbeddingClient() { + return new TransformersEmbeddingModel(MetadataMode.EMBED); + } + + /** + * 我们启动有加载很多 Embedding 模型,不晓得取哪个好,先 new 个 TransformersEmbeddingModel 跑 + */ + @Bean + public RedisVectorStore vectorStore(TransformersEmbeddingModel transformersEmbeddingModel, RedisVectorStoreProperties properties, + RedisProperties redisProperties) { + var config = RedisVectorStore.RedisVectorStoreConfig.builder() + .withIndexName(properties.getIndex()) + .withPrefix(properties.getPrefix()) + .build(); + + RedisVectorStore redisVectorStore = new RedisVectorStore(config, transformersEmbeddingModel, + new JedisPooled(redisProperties.getHost(), redisProperties.getPort()), + properties.isInitializeSchema()); + redisVectorStore.afterPropertiesSet(); + return redisVectorStore; + } + + @Bean + public TokenTextSplitter tokenTextSplitter() { + return new TokenTextSplitter(500, 100, 5, 10000, true); + } + } \ No newline at end of file diff --git a/yudao-module-ai/yudao-spring-boot-starter-ai/src/main/java/org/springframework/ai/autoconfigure/vectorstore/redis/RedisVectorStoreAutoConfiguration.java b/yudao-module-ai/yudao-spring-boot-starter-ai/src/main/java/org/springframework/ai/autoconfigure/vectorstore/redis/RedisVectorStoreAutoConfiguration.java new file mode 100644 index 000000000..03dc1c19b --- /dev/null +++ b/yudao-module-ai/yudao-spring-boot-starter-ai/src/main/java/org/springframework/ai/autoconfigure/vectorstore/redis/RedisVectorStoreAutoConfiguration.java @@ -0,0 +1,59 @@ +/* + * Copyright 2023 - 2024 the original author or authors. + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * https://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ +package org.springframework.ai.autoconfigure.vectorstore.redis; + +import org.springframework.ai.embedding.EmbeddingModel; +import org.springframework.ai.vectorstore.RedisVectorStore; +import org.springframework.ai.vectorstore.RedisVectorStore.RedisVectorStoreConfig; +import org.springframework.boot.autoconfigure.AutoConfiguration; +import org.springframework.boot.autoconfigure.condition.ConditionalOnClass; +import org.springframework.boot.autoconfigure.condition.ConditionalOnMissingBean; +import org.springframework.boot.autoconfigure.data.redis.RedisAutoConfiguration; +import org.springframework.boot.context.properties.EnableConfigurationProperties; +import org.springframework.context.annotation.Bean; +import org.springframework.data.redis.connection.jedis.JedisConnectionFactory; +import redis.clients.jedis.JedisPooled; + +/** + * TODO @xin 先拿 spring-ai 最新代码覆盖,1.0.0-M1 跟 redis 自动配置会冲突 + * + * @author Christian Tzolov + * @author Eddú Meléndez + */ +@AutoConfiguration(after = RedisAutoConfiguration.class) +@ConditionalOnClass({JedisPooled.class, JedisConnectionFactory.class, RedisVectorStore.class, EmbeddingModel.class}) +//@ConditionalOnBean(JedisConnectionFactory.class) +@EnableConfigurationProperties(RedisVectorStoreProperties.class) +public class RedisVectorStoreAutoConfiguration { + + + + @Bean + @ConditionalOnMissingBean + public RedisVectorStore vectorStore(EmbeddingModel embeddingModel, RedisVectorStoreProperties properties, + JedisConnectionFactory jedisConnectionFactory) { + + var config = RedisVectorStoreConfig.builder() + .withIndexName(properties.getIndex()) + .withPrefix(properties.getPrefix()) + .build(); + + return new RedisVectorStore(config, embeddingModel, + new JedisPooled(jedisConnectionFactory.getHostName(), jedisConnectionFactory.getPort()), + properties.isInitializeSchema()); + } + +} diff --git a/yudao-module-ai/yudao-spring-boot-starter-ai/src/main/java/org/springframework/ai/vectorstore/RedisVectorStore.java b/yudao-module-ai/yudao-spring-boot-starter-ai/src/main/java/org/springframework/ai/vectorstore/RedisVectorStore.java new file mode 100644 index 000000000..de80401ed --- /dev/null +++ b/yudao-module-ai/yudao-spring-boot-starter-ai/src/main/java/org/springframework/ai/vectorstore/RedisVectorStore.java @@ -0,0 +1,456 @@ +/* + * Copyright 2023 - 2024 the original author or authors. + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * https://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ +package org.springframework.ai.vectorstore; + +import org.slf4j.Logger; +import org.slf4j.LoggerFactory; +import org.springframework.ai.document.Document; +import org.springframework.ai.embedding.EmbeddingModel; +import org.springframework.ai.vectorstore.filter.FilterExpressionConverter; +import org.springframework.beans.factory.InitializingBean; +import org.springframework.util.Assert; +import org.springframework.util.CollectionUtils; +import redis.clients.jedis.JedisPooled; +import redis.clients.jedis.Pipeline; +import redis.clients.jedis.json.Path2; +import redis.clients.jedis.search.*; +import redis.clients.jedis.search.Schema.FieldType; +import redis.clients.jedis.search.schemafields.*; +import redis.clients.jedis.search.schemafields.VectorField.VectorAlgorithm; + +import java.text.MessageFormat; +import java.util.*; +import java.util.function.Function; +import java.util.function.Predicate; +import java.util.stream.Collectors; + +/** + * The RedisVectorStore is for managing and querying vector data in a Redis database. It + * offers functionalities like adding, deleting, and performing similarity searches on + * documents. + * + * The store utilizes RedisJSON and RedisSearch to handle JSON documents and to index and + * search vector data. It supports various vector algorithms (e.g., FLAT, HSNW) for + * efficient similarity searches. Additionally, it allows for custom metadata fields in + * the documents to be stored alongside the vector and content data. + * + * This class requires a RedisVectorStoreConfig configuration object for initialization, + * which includes settings like Redis URI, index name, field names, and vector algorithms. + * It also requires an EmbeddingModel to convert documents into embeddings before storing + * them. + * + * @author Julien Ruaux + * @author Christian Tzolov + * @author Eddú Meléndez + * @see VectorStore + * @see RedisVectorStoreConfig + * @see EmbeddingModel + */ +public class RedisVectorStore implements VectorStore, InitializingBean { + + public enum Algorithm { + + FLAT, HSNW + + } + + public record MetadataField(String name, FieldType fieldType) { + + public static MetadataField text(String name) { + return new MetadataField(name, FieldType.TEXT); + } + + public static MetadataField numeric(String name) { + return new MetadataField(name, FieldType.NUMERIC); + } + + public static MetadataField tag(String name) { + return new MetadataField(name, FieldType.TAG); + } + + } + + /** + * Configuration for the Redis vector store. + */ + public static final class RedisVectorStoreConfig { + + private final String indexName; + + private final String prefix; + + private final String contentFieldName; + + private final String embeddingFieldName; + + private final Algorithm vectorAlgorithm; + + private final List metadataFields; + + private RedisVectorStoreConfig() { + this(builder()); + } + + private RedisVectorStoreConfig(Builder builder) { + this.indexName = builder.indexName; + this.prefix = builder.prefix; + this.contentFieldName = builder.contentFieldName; + this.embeddingFieldName = builder.embeddingFieldName; + this.vectorAlgorithm = builder.vectorAlgorithm; + this.metadataFields = builder.metadataFields; + } + + /** + * Start building a new configuration. + * @return The entry point for creating a new configuration. + */ + public static Builder builder() { + + return new Builder(); + } + + /** + * {@return the default config} + */ + public static RedisVectorStoreConfig defaultConfig() { + + return builder().build(); + } + + public static class Builder { + + private String indexName = DEFAULT_INDEX_NAME; + + private String prefix = DEFAULT_PREFIX; + + private String contentFieldName = DEFAULT_CONTENT_FIELD_NAME; + + private String embeddingFieldName = DEFAULT_EMBEDDING_FIELD_NAME; + + private Algorithm vectorAlgorithm = DEFAULT_VECTOR_ALGORITHM; + + private List metadataFields = new ArrayList<>(); + + private Builder() { + } + + /** + * Configures the Redis index name to use. + * @param name the index name to use + * @return this builder + */ + public Builder withIndexName(String name) { + this.indexName = name; + return this; + } + + /** + * Configures the Redis key prefix to use (default: "embedding:"). + * @param prefix the prefix to use + * @return this builder + */ + public Builder withPrefix(String prefix) { + this.prefix = prefix; + return this; + } + + /** + * Configures the Redis content field name to use. + * @param name the content field name to use + * @return this builder + */ + public Builder withContentFieldName(String name) { + this.contentFieldName = name; + return this; + } + + /** + * Configures the Redis embedding field name to use. + * @param name the embedding field name to use + * @return this builder + */ + public Builder withEmbeddingFieldName(String name) { + this.embeddingFieldName = name; + return this; + } + + /** + * Configures the Redis vector algorithmto use. + * @param algorithm the vector algorithm to use + * @return this builder + */ + public Builder withVectorAlgorithm(Algorithm algorithm) { + this.vectorAlgorithm = algorithm; + return this; + } + + public Builder withMetadataFields(MetadataField... fields) { + return withMetadataFields(Arrays.asList(fields)); + } + + public Builder withMetadataFields(List fields) { + this.metadataFields = fields; + return this; + } + + /** + * {@return the immutable configuration} + */ + public RedisVectorStoreConfig build() { + + return new RedisVectorStoreConfig(this); + } + + } + + } + + private final boolean initializeSchema; + + public static final String DEFAULT_INDEX_NAME = "spring-ai-index"; + + public static final String DEFAULT_CONTENT_FIELD_NAME = "content"; + + public static final String DEFAULT_EMBEDDING_FIELD_NAME = "embedding"; + + public static final String DEFAULT_PREFIX = "embedding:"; + + public static final Algorithm DEFAULT_VECTOR_ALGORITHM = Algorithm.HSNW; + + private static final String QUERY_FORMAT = "%s=>[KNN %s @%s $%s AS %s]"; + + private static final Path2 JSON_SET_PATH = Path2.of("$"); + + private static final String JSON_PATH_PREFIX = "$."; + + private static final Logger logger = LoggerFactory.getLogger(RedisVectorStore.class); + + private static final Predicate RESPONSE_OK = Predicate.isEqual("OK"); + + private static final Predicate RESPONSE_DEL_OK = Predicate.isEqual(1l); + + private static final String VECTOR_TYPE_FLOAT32 = "FLOAT32"; + + private static final String EMBEDDING_PARAM_NAME = "BLOB"; + + public static final String DISTANCE_FIELD_NAME = "vector_score"; + + private static final String DEFAULT_DISTANCE_METRIC = "COSINE"; + + private final JedisPooled jedis; + + private final EmbeddingModel embeddingModel; + + private final RedisVectorStoreConfig config; + + private FilterExpressionConverter filterExpressionConverter; + + public RedisVectorStore(RedisVectorStoreConfig config, EmbeddingModel embeddingModel, JedisPooled jedis, + boolean initializeSchema) { + + Assert.notNull(config, "Config must not be null"); + Assert.notNull(embeddingModel, "Embedding model must not be null"); + this.initializeSchema = initializeSchema; + + this.jedis = jedis; + this.embeddingModel = embeddingModel; + this.config = config; + this.filterExpressionConverter = new RedisFilterExpressionConverter(this.config.metadataFields); + } + + public JedisPooled getJedis() { + return this.jedis; + } + + @Override + public void add(List documents) { + try (Pipeline pipeline = this.jedis.pipelined()) { + for (Document document : documents) { + var embedding = this.embeddingModel.embed(document); + document.setEmbedding(embedding); + + var fields = new HashMap(); + fields.put(this.config.embeddingFieldName, embedding); + fields.put(this.config.contentFieldName, document.getContent()); + fields.putAll(document.getMetadata()); + pipeline.jsonSetWithEscape(key(document.getId()), JSON_SET_PATH, fields); + } + List responses = pipeline.syncAndReturnAll(); + Optional errResponse = responses.stream().filter(Predicate.not(RESPONSE_OK)).findAny(); + if (errResponse.isPresent()) { + String message = MessageFormat.format("Could not add document: {0}", errResponse.get()); + if (logger.isErrorEnabled()) { + logger.error(message); + } + throw new RuntimeException(message); + } + } + } + + private String key(String id) { + return this.config.prefix + id; + } + + @Override + public Optional delete(List idList) { + try (Pipeline pipeline = this.jedis.pipelined()) { + for (String id : idList) { + pipeline.jsonDel(key(id)); + } + List responses = pipeline.syncAndReturnAll(); + Optional errResponse = responses.stream().filter(Predicate.not(RESPONSE_DEL_OK)).findAny(); + if (errResponse.isPresent()) { + if (logger.isErrorEnabled()) { + logger.error("Could not delete document: {}", errResponse.get()); + } + return Optional.of(false); + } + return Optional.of(true); + } + } + + @Override + public List similaritySearch(SearchRequest request) { + + Assert.isTrue(request.getTopK() > 0, "The number of documents to returned must be greater than zero"); + Assert.isTrue(request.getSimilarityThreshold() >= 0 && request.getSimilarityThreshold() <= 1, + "The similarity score is bounded between 0 and 1; least to most similar respectively."); + + String filter = nativeExpressionFilter(request); + + String queryString = String.format(QUERY_FORMAT, filter, request.getTopK(), this.config.embeddingFieldName, + EMBEDDING_PARAM_NAME, DISTANCE_FIELD_NAME); + + List returnFields = new ArrayList<>(); + this.config.metadataFields.stream().map(MetadataField::name).forEach(returnFields::add); + returnFields.add(this.config.embeddingFieldName); + returnFields.add(this.config.contentFieldName); + returnFields.add(DISTANCE_FIELD_NAME); + var embedding = toFloatArray(this.embeddingModel.embed(request.getQuery())); + Query query = new Query(queryString).addParam(EMBEDDING_PARAM_NAME, RediSearchUtil.toByteArray(embedding)) + .returnFields(returnFields.toArray(new String[0])) + .setSortBy(DISTANCE_FIELD_NAME, true) + .dialect(2); + + SearchResult result = this.jedis.ftSearch(this.config.indexName, query); + return result.getDocuments() + .stream() + .filter(d -> similarityScore(d) >= request.getSimilarityThreshold()) + .map(this::toDocument) + .toList(); + } + + private Document toDocument(redis.clients.jedis.search.Document doc) { + var id = doc.getId().substring(this.config.prefix.length()); + var content = doc.hasProperty(this.config.contentFieldName) ? doc.getString(this.config.contentFieldName) + : null; + Map metadata = this.config.metadataFields.stream() + .map(MetadataField::name) + .filter(doc::hasProperty) + .collect(Collectors.toMap(Function.identity(), doc::getString)); + metadata.put(DISTANCE_FIELD_NAME, 1 - similarityScore(doc)); + return new Document(id, content, metadata); + } + + private float similarityScore(redis.clients.jedis.search.Document doc) { + return (2 - Float.parseFloat(doc.getString(DISTANCE_FIELD_NAME))) / 2; + } + + private String nativeExpressionFilter(SearchRequest request) { + if (request.getFilterExpression() == null) { + return "*"; + } + return "(" + this.filterExpressionConverter.convertExpression(request.getFilterExpression()) + ")"; + } + + @Override + public void afterPropertiesSet() { + + if (!this.initializeSchema) { + return; + } + + // If index already exists don't do anything + if (this.jedis.ftList().contains(this.config.indexName)) { + return; + } + + String response = this.jedis.ftCreate(this.config.indexName, + FTCreateParams.createParams().on(IndexDataType.JSON).addPrefix(this.config.prefix), schemaFields()); + if (!RESPONSE_OK.test(response)) { + String message = MessageFormat.format("Could not create index: {0}", response); + throw new RuntimeException(message); + } + } + + private Iterable schemaFields() { + Map vectorAttrs = new HashMap<>(); + vectorAttrs.put("DIM", this.embeddingModel.dimensions()); + vectorAttrs.put("DISTANCE_METRIC", DEFAULT_DISTANCE_METRIC); + vectorAttrs.put("TYPE", VECTOR_TYPE_FLOAT32); + List fields = new ArrayList<>(); + fields.add(TextField.of(jsonPath(this.config.contentFieldName)).as(this.config.contentFieldName).weight(1.0)); + fields.add(VectorField.builder() + .fieldName(jsonPath(this.config.embeddingFieldName)) + .algorithm(vectorAlgorithm()) + .attributes(vectorAttrs) + .as(this.config.embeddingFieldName) + .build()); + + if (!CollectionUtils.isEmpty(this.config.metadataFields)) { + for (MetadataField field : this.config.metadataFields) { + fields.add(schemaField(field)); + } + } + return fields; + } + + private SchemaField schemaField(MetadataField field) { + String fieldName = jsonPath(field.name); + switch (field.fieldType) { + case NUMERIC: + return NumericField.of(fieldName).as(field.name); + case TAG: + return TagField.of(fieldName).as(field.name); + case TEXT: + return TextField.of(fieldName).as(field.name); + default: + throw new IllegalArgumentException( + MessageFormat.format("Field {0} has unsupported type {1}", field.name, field.fieldType)); + } + } + + private VectorAlgorithm vectorAlgorithm() { + if (config.vectorAlgorithm == Algorithm.HSNW) { + return VectorAlgorithm.HNSW; + } + return VectorAlgorithm.FLAT; + } + + private String jsonPath(String field) { + return JSON_PATH_PREFIX + field; + } + + private static float[] toFloatArray(List embeddingDouble) { + float[] embeddingFloat = new float[embeddingDouble.size()]; + int i = 0; + for (Double d : embeddingDouble) { + embeddingFloat[i++] = d.floatValue(); + } + return embeddingFloat; + } + +} \ No newline at end of file diff --git a/yudao-module-ai/yudao-spring-boot-starter-ai/src/main/resources/webapp/test/Fel.pdf b/yudao-module-ai/yudao-spring-boot-starter-ai/src/main/resources/webapp/test/Fel.pdf new file mode 100755 index 000000000..405b67fed Binary files /dev/null and b/yudao-module-ai/yudao-spring-boot-starter-ai/src/main/resources/webapp/test/Fel.pdf differ diff --git a/yudao-server/src/main/resources/application.yaml b/yudao-server/src/main/resources/application.yaml index 594ef0611..8677a5b71 100644 --- a/yudao-server/src/main/resources/application.yaml +++ b/yudao-server/src/main/resources/application.yaml @@ -153,6 +153,10 @@ spring: spring: ai: + vectorstore: + redis: + index: default-index + prefix: "default:" qianfan: # 文心一言 api-key: x0cuLZ7XsaTCU08vuJWO87Lg secret-key: R9mYF9dl9KASgi5RUq0FQt3wRisSnOcK