Merge branch 'master-jdk21-ai' of https://gitee.com/cherishsince/ruoyi-vue-pro into develop

This commit is contained in:
YunaiV 2024-08-10 18:41:48 +08:00
commit 7288e6c980
28 changed files with 953 additions and 26 deletions

View File

@ -18,7 +18,7 @@
<name>${project.artifactId}</name>
<description>
ai 模块下,接入 LLM 大模型,支持聊天、绘图、音乐、写作、思维图等功能。
ai 模块下,接入 LLM 大模型,支持聊天、绘图、音乐、写作、思维图等功能。
目前已接入各种模型,不限于:
国内:通义千问、文心一言、讯飞星火、智谱 GLM、DeepSeek
国外OpenAI、Ollama、Midjourney、StableDiffusion、Suno

View File

@ -22,7 +22,7 @@ public enum AiChatRoleEnum implements IntArrayValuable {
除此之外不需要除了正文内容外的其他回复如标题开头任何解释性语句或道歉
"""),
AI_MIND_MAP_ROLE(2, "图助手", """
AI_MIND_MAP_ROLE(2, "图助手", """
你是一位非常优秀的思维导图助手你会把用户的所有提问都总结成思维导图然后以 Markdown 格式输出markdown 只需要输出一级标题二级标题三级标题四级标题最多输出四级除此之外不要输出任何其他 markdown 标记下面是一个合格的例子
# Geek-AI 助手
## 完整的开源系统

View File

@ -45,9 +45,11 @@ public interface ErrorCodeConstants {
// ========== API 音乐 1-040-006-000 ==========
ErrorCode MUSIC_NOT_EXISTS = new ErrorCode(1_022_006_000, "音乐不存在!");
// ========== API 写作 1-022-007-000 ==========
ErrorCode WRITE_NOT_EXISTS = new ErrorCode(1_022_007_000, "作文不存在!");
ErrorCode WRITE_STREAM_ERROR = new ErrorCode(1_022_07_001, "写作生成异常!");
// ========== API 思维导图 1-040-008-000 ==========
ErrorCode MIND_MAP_NOT_EXISTS = new ErrorCode(1_040_008_000, "思维导图不存在!");
}

View File

@ -12,7 +12,7 @@
<name>${project.artifactId}</name>
<description>
ai 模块下,接入 LLM 大模型,支持聊天、绘图、音乐、写作、思维图等功能。
ai 模块下,接入 LLM 大模型,支持聊天、绘图、音乐、写作、思维图等功能。
目前已接入各种模型,不限于:
国内:通义千问、文心一言、讯飞星火、智谱 GLM、DeepSeek
国外OpenAI、Ollama、Midjourney、StableDiffusion、Suno

View File

@ -5,10 +5,7 @@ import cn.iocoder.yudao.framework.ai.core.model.midjourney.api.MidjourneyApi;
import cn.iocoder.yudao.framework.common.pojo.CommonResult;
import cn.iocoder.yudao.framework.common.pojo.PageResult;
import cn.iocoder.yudao.framework.common.util.object.BeanUtils;
import cn.iocoder.yudao.module.ai.controller.admin.image.vo.AiImageDrawReqVO;
import cn.iocoder.yudao.module.ai.controller.admin.image.vo.AiImagePageReqVO;
import cn.iocoder.yudao.module.ai.controller.admin.image.vo.AiImageRespVO;
import cn.iocoder.yudao.module.ai.controller.admin.image.vo.AiImageUpdateReqVO;
import cn.iocoder.yudao.module.ai.controller.admin.image.vo.*;
import cn.iocoder.yudao.module.ai.controller.admin.image.vo.midjourney.AiMidjourneyActionReqVO;
import cn.iocoder.yudao.module.ai.controller.admin.image.vo.midjourney.AiMidjourneyImagineReqVO;
import cn.iocoder.yudao.module.ai.dal.dataobject.image.AiImageDO;
@ -45,6 +42,13 @@ public class AiImageController {
return success(BeanUtils.toBean(pageResult, AiImageRespVO.class));
}
@GetMapping("/public-page")
@Operation(summary = "获取公开的绘图分页")
public CommonResult<PageResult<AiImageRespVO>> getImagePagePublic(AiImagePublicPageReqVO pageReqVO) {
PageResult<AiImageDO> pageResult = imageService.getImagePagePublic(pageReqVO);
return success(BeanUtils.toBean(pageResult, AiImageRespVO.class));
}
@GetMapping("/get-my")
@Operation(summary = "获取【我的】绘图记录")
@Parameter(name = "id", required = true, description = "绘画编号", example = "1024")

View File

@ -0,0 +1,14 @@
package cn.iocoder.yudao.module.ai.controller.admin.image.vo;
import cn.iocoder.yudao.framework.common.pojo.PageParam;
import io.swagger.v3.oas.annotations.media.Schema;
import lombok.Data;
@Schema(description = "管理后台 - AI 绘画公开的分页 Request VO")
@Data
public class AiImagePublicPageReqVO extends PageParam {
@Schema(description = "提示词")
private String prompt;
}

View File

@ -1,20 +1,25 @@
package cn.iocoder.yudao.module.ai.controller.admin.mindmap;
import cn.iocoder.yudao.framework.common.pojo.CommonResult;
import cn.iocoder.yudao.framework.common.pojo.PageResult;
import cn.iocoder.yudao.framework.common.util.object.BeanUtils;
import cn.iocoder.yudao.module.ai.controller.admin.mindmap.vo.AiMindMapGenerateReqVO;
import cn.iocoder.yudao.module.ai.controller.admin.mindmap.vo.AiMindMapPageReqVO;
import cn.iocoder.yudao.module.ai.controller.admin.mindmap.vo.AiMindMapRespVO;
import cn.iocoder.yudao.module.ai.dal.dataobject.mindmap.AiMindMapDO;
import cn.iocoder.yudao.module.ai.service.mindmap.AiMindMapService;
import io.swagger.v3.oas.annotations.Operation;
import io.swagger.v3.oas.annotations.Parameter;
import io.swagger.v3.oas.annotations.tags.Tag;
import jakarta.annotation.Resource;
import jakarta.annotation.security.PermitAll;
import jakarta.validation.Valid;
import org.springframework.http.MediaType;
import org.springframework.web.bind.annotation.PostMapping;
import org.springframework.web.bind.annotation.RequestBody;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RestController;
import org.springframework.security.access.prepost.PreAuthorize;
import org.springframework.web.bind.annotation.*;
import reactor.core.publisher.Flux;
import static cn.iocoder.yudao.framework.common.pojo.CommonResult.success;
import static cn.iocoder.yudao.framework.security.core.util.SecurityFrameworkUtils.getLoginUserId;
@Tag(name = "管理后台 - AI 思维导图")
@ -26,10 +31,29 @@ public class AiMindMapController {
private AiMindMapService mindMapService;
@PostMapping(value = "/generate-stream", produces = MediaType.TEXT_EVENT_STREAM_VALUE)
@Operation(summary = "图生成(流式)", description = "流式返回,响应较快")
@Operation(summary = "图生成(流式)", description = "流式返回,响应较快")
@PermitAll // 解决 SSE 最终响应的时候会被 Access Denied 拦截的问题
public Flux<CommonResult<String>> generateMindMap(@RequestBody @Valid AiMindMapGenerateReqVO generateReqVO) {
return mindMapService.generateMindMap(generateReqVO, getLoginUserId());
}
// ================ 导图管理 ================
@DeleteMapping("/delete")
@Operation(summary = "删除思维导图")
@Parameter(name = "id", description = "编号", required = true)
@PreAuthorize("@ss.hasPermission('ai:mind-map:delete')")
public CommonResult<Boolean> deleteMindMap(@RequestParam("id") Long id) {
mindMapService.deleteMindMap(id);
return success(true);
}
@GetMapping("/page")
@Operation(summary = "获得思维导图分页")
@PreAuthorize("@ss.hasPermission('ai:mind-map:query')")
public CommonResult<PageResult<AiMindMapRespVO>> getMindMapPage(@Valid AiMindMapPageReqVO pageReqVO) {
PageResult<AiMindMapDO> pageResult = mindMapService.getMindMapPage(pageReqVO);
return success(BeanUtils.toBean(pageResult, AiMindMapRespVO.class));
}
}

View File

@ -0,0 +1,30 @@
package cn.iocoder.yudao.module.ai.controller.admin.mindmap.vo;
import cn.iocoder.yudao.framework.common.pojo.PageParam;
import io.swagger.v3.oas.annotations.media.Schema;
import lombok.Data;
import lombok.EqualsAndHashCode;
import lombok.ToString;
import org.springframework.format.annotation.DateTimeFormat;
import java.time.LocalDateTime;
import static cn.iocoder.yudao.framework.common.util.date.DateUtils.FORMAT_YEAR_MONTH_DAY_HOUR_MINUTE_SECOND;
@Schema(description = "管理后台 - AI 思维导图分页 Request VO")
@Data
@EqualsAndHashCode(callSuper = true)
@ToString(callSuper = true)
public class AiMindMapPageReqVO extends PageParam {
@Schema(description = "用户编号", example = "4325")
private Long userId;
@Schema(description = "生成内容提示", example = "Java 学习路线")
private String prompt;
@Schema(description = "创建时间")
@DateTimeFormat(pattern = FORMAT_YEAR_MONTH_DAY_HOUR_MINUTE_SECOND)
private LocalDateTime[] createTime;
}

View File

@ -0,0 +1,36 @@
package cn.iocoder.yudao.module.ai.controller.admin.mindmap.vo;
import io.swagger.v3.oas.annotations.media.Schema;
import lombok.Data;
import java.time.LocalDateTime;
@Schema(description = "管理后台 - AI 思维导图 Response VO")
@Data
public class AiMindMapRespVO {
@Schema(description = "编号", requiredMode = Schema.RequiredMode.REQUIRED, example = "3373")
private Long id;
@Schema(description = "用户编号", requiredMode = Schema.RequiredMode.REQUIRED, example = "4325")
private Long userId;
@Schema(description = "生成内容提示", requiredMode = Schema.RequiredMode.REQUIRED, example = "Java 学习路线")
private String prompt;
@Schema(description = "生成的思维导图内容")
private String generatedContent;
@Schema(description = "平台", requiredMode = Schema.RequiredMode.REQUIRED, example = "OpenAI")
private String platform;
@Schema(description = "模型", requiredMode = Schema.RequiredMode.REQUIRED, example = "gpt-3.5-turbo-0125")
private String model;
@Schema(description = "错误信息")
private String errorMessage;
@Schema(description = "创建时间", requiredMode = Schema.RequiredMode.REQUIRED)
private LocalDateTime createTime;
}

View File

@ -4,6 +4,7 @@ import cn.iocoder.yudao.framework.common.pojo.PageResult;
import cn.iocoder.yudao.framework.mybatis.core.mapper.BaseMapperX;
import cn.iocoder.yudao.framework.mybatis.core.query.LambdaQueryWrapperX;
import cn.iocoder.yudao.module.ai.controller.admin.image.vo.AiImagePageReqVO;
import cn.iocoder.yudao.module.ai.controller.admin.image.vo.AiImagePublicPageReqVO;
import cn.iocoder.yudao.module.ai.dal.dataobject.image.AiImageDO;
import org.apache.ibatis.annotations.Mapper;
@ -41,6 +42,13 @@ public interface AiImageMapper extends BaseMapperX<AiImageDO> {
.orderByDesc(AiImageDO::getId));
}
default PageResult<AiImageDO> selectPage(AiImagePublicPageReqVO pageReqVO) {
return selectPage(pageReqVO, new LambdaQueryWrapperX<AiImageDO>()
.eqIfPresent(AiImageDO::getPublicStatus, Boolean.TRUE)
.likeIfPresent(AiImageDO::getPrompt, pageReqVO.getPrompt())
.orderByDesc(AiImageDO::getId));
}
default List<AiImageDO> selectListByStatusAndPlatform(Integer status, String platform) {
return selectList(AiImageDO::getStatus, status,
AiImageDO::getPlatform, platform);

View File

@ -1,6 +1,9 @@
package cn.iocoder.yudao.module.ai.dal.mysql.mindmap;
import cn.iocoder.yudao.framework.common.pojo.PageResult;
import cn.iocoder.yudao.framework.mybatis.core.mapper.BaseMapperX;
import cn.iocoder.yudao.framework.mybatis.core.query.LambdaQueryWrapperX;
import cn.iocoder.yudao.module.ai.controller.admin.mindmap.vo.AiMindMapPageReqVO;
import cn.iocoder.yudao.module.ai.dal.dataobject.mindmap.AiMindMapDO;
import org.apache.ibatis.annotations.Mapper;
@ -11,4 +14,13 @@ import org.apache.ibatis.annotations.Mapper;
*/
@Mapper
public interface AiMindMapMapper extends BaseMapperX<AiMindMapDO> {
default PageResult<AiMindMapDO> selectPage(AiMindMapPageReqVO reqVO) {
return selectPage(reqVO, new LambdaQueryWrapperX<AiMindMapDO>()
.eqIfPresent(AiMindMapDO::getUserId, reqVO.getUserId())
.eqIfPresent(AiMindMapDO::getPrompt, reqVO.getPrompt())
.betweenIfPresent(AiMindMapDO::getCreateTime, reqVO.getCreateTime())
.orderByDesc(AiMindMapDO::getId));
}
}

View File

@ -2,9 +2,7 @@ package cn.iocoder.yudao.module.ai.service.image;
import cn.iocoder.yudao.framework.ai.core.model.midjourney.api.MidjourneyApi;
import cn.iocoder.yudao.framework.common.pojo.PageResult;
import cn.iocoder.yudao.module.ai.controller.admin.image.vo.AiImageDrawReqVO;
import cn.iocoder.yudao.module.ai.controller.admin.image.vo.AiImagePageReqVO;
import cn.iocoder.yudao.module.ai.controller.admin.image.vo.AiImageUpdateReqVO;
import cn.iocoder.yudao.module.ai.controller.admin.image.vo.*;
import cn.iocoder.yudao.module.ai.controller.admin.image.vo.midjourney.AiMidjourneyActionReqVO;
import cn.iocoder.yudao.module.ai.controller.admin.image.vo.midjourney.AiMidjourneyImagineReqVO;
import cn.iocoder.yudao.module.ai.dal.dataobject.image.AiImageDO;
@ -28,6 +26,14 @@ public interface AiImageService {
*/
PageResult<AiImageDO> getImagePageMy(Long userId, AiImagePageReqVO pageReqVO);
/**
* 获取公开的绘图分页
*
* @param pageReqVO 分页条件
* @return 绘图分页
*/
PageResult<AiImageDO> getImagePagePublic(AiImagePublicPageReqVO pageReqVO);
/**
* 获得绘图记录
*

View File

@ -12,9 +12,7 @@ import cn.iocoder.yudao.framework.ai.core.enums.AiPlatformEnum;
import cn.iocoder.yudao.framework.ai.core.model.midjourney.api.MidjourneyApi;
import cn.iocoder.yudao.framework.common.pojo.PageResult;
import cn.iocoder.yudao.framework.common.util.object.BeanUtils;
import cn.iocoder.yudao.module.ai.controller.admin.image.vo.AiImageDrawReqVO;
import cn.iocoder.yudao.module.ai.controller.admin.image.vo.AiImagePageReqVO;
import cn.iocoder.yudao.module.ai.controller.admin.image.vo.AiImageUpdateReqVO;
import cn.iocoder.yudao.module.ai.controller.admin.image.vo.*;
import cn.iocoder.yudao.module.ai.controller.admin.image.vo.midjourney.AiMidjourneyActionReqVO;
import cn.iocoder.yudao.module.ai.controller.admin.image.vo.midjourney.AiMidjourneyImagineReqVO;
import cn.iocoder.yudao.module.ai.dal.dataobject.image.AiImageDO;
@ -70,6 +68,11 @@ public class AiImageServiceImpl implements AiImageService {
return imageMapper.selectPageMy(userId, pageReqVO);
}
@Override
public PageResult<AiImageDO> getImagePagePublic(AiImagePublicPageReqVO pageReqVO) {
return imageMapper.selectPage(pageReqVO);
}
@Override
public AiImageDO getImage(Long id) {
return imageMapper.selectById(id);

View File

@ -0,0 +1,15 @@
package cn.iocoder.yudao.module.ai.service.knowledge;
/**
* AI 知识库 Service 接口
*
* @author xiaoxin
*/
public interface DocService {
/**
* 向量化文档
*/
void embeddingDoc();
}

View File

@ -0,0 +1,42 @@
package cn.iocoder.yudao.module.ai.service.knowledge;
import jakarta.annotation.Resource;
import lombok.extern.slf4j.Slf4j;
import org.springframework.ai.document.Document;
import org.springframework.ai.reader.tika.TikaDocumentReader;
import org.springframework.ai.transformer.splitter.TokenTextSplitter;
import org.springframework.ai.vectorstore.RedisVectorStore;
import org.springframework.beans.factory.annotation.Value;
import java.util.List;
/**
* AI 知识库 Service 实现类
*
* @author xiaoxin
*/
//@Service // TODO 芋艿临时注释避免无法启动
@Slf4j
public class DocServiceImpl implements DocService {
@Resource
private RedisVectorStore vectorStore;
@Resource
private TokenTextSplitter tokenTextSplitter;
// TODO @xin 临时测试用后续删
@Value("classpath:/webapp/test/Fel.pdf")
private org.springframework.core.io.Resource data;
@Override
public void embeddingDoc() {
// 读取文件
TikaDocumentReader loader = new TikaDocumentReader(data);
List<Document> documents = loader.get();
// 文档分段
List<Document> segments = tokenTextSplitter.apply(documents);
// 向量化并存储
vectorStore.add(segments);
}
}

View File

@ -1,7 +1,10 @@
package cn.iocoder.yudao.module.ai.service.mindmap;
import cn.iocoder.yudao.framework.common.pojo.CommonResult;
import cn.iocoder.yudao.framework.common.pojo.PageResult;
import cn.iocoder.yudao.module.ai.controller.admin.mindmap.vo.AiMindMapGenerateReqVO;
import cn.iocoder.yudao.module.ai.controller.admin.mindmap.vo.AiMindMapPageReqVO;
import cn.iocoder.yudao.module.ai.dal.dataobject.mindmap.AiMindMapDO;
import reactor.core.publisher.Flux;
/**
@ -20,4 +23,19 @@ public interface AiMindMapService {
*/
Flux<CommonResult<String>> generateMindMap(AiMindMapGenerateReqVO generateReqVO, Long userId);
/**
* 删除思维导图
*
* @param id 编号
*/
void deleteMindMap(Long id);
/**
* 获得思维导图分页
*
* @param pageReqVO 分页查询
* @return 思维导图分页
*/
PageResult<AiMindMapDO> getMindMapPage(AiMindMapPageReqVO pageReqVO);
}

View File

@ -6,9 +6,11 @@ import cn.hutool.core.util.StrUtil;
import cn.iocoder.yudao.framework.ai.core.enums.AiPlatformEnum;
import cn.iocoder.yudao.framework.ai.core.util.AiUtils;
import cn.iocoder.yudao.framework.common.pojo.CommonResult;
import cn.iocoder.yudao.framework.common.pojo.PageResult;
import cn.iocoder.yudao.framework.common.util.object.BeanUtils;
import cn.iocoder.yudao.framework.tenant.core.util.TenantUtils;
import cn.iocoder.yudao.module.ai.controller.admin.mindmap.vo.AiMindMapGenerateReqVO;
import cn.iocoder.yudao.module.ai.controller.admin.mindmap.vo.AiMindMapPageReqVO;
import cn.iocoder.yudao.module.ai.dal.dataobject.mindmap.AiMindMapDO;
import cn.iocoder.yudao.module.ai.dal.dataobject.model.AiChatModelDO;
import cn.iocoder.yudao.module.ai.dal.dataobject.model.AiChatRoleDO;
@ -33,8 +35,10 @@ import reactor.core.publisher.Flux;
import java.util.ArrayList;
import java.util.List;
import static cn.iocoder.yudao.framework.common.exception.util.ServiceExceptionUtil.exception;
import static cn.iocoder.yudao.framework.common.pojo.CommonResult.error;
import static cn.iocoder.yudao.framework.common.pojo.CommonResult.success;
import static cn.iocoder.yudao.module.ai.enums.ErrorCodeConstants.MIND_MAP_NOT_EXISTS;
/**
* AI 思维导图 Service 实现类
@ -57,10 +61,10 @@ public class AiMindMapServiceImpl implements AiMindMapService {
@Override
public Flux<CommonResult<String>> generateMindMap(AiMindMapGenerateReqVO generateReqVO, Long userId) {
// 1. 获取图模型尝试获取思维导图助手角色如果没有则使用默认模型
// 1. 获取图模型尝试获取思维导图助手角色如果没有则使用默认模型
AiChatRoleDO role = CollUtil.getFirst(
chatRoleService.getChatRoleListByName(AiChatRoleEnum.AI_MIND_MAP_ROLE.getName()));
// 1.1 获取图执行模型
// 1.1 获取图执行模型
AiChatModelDO model = getModel(role);
// 1.2 获取角色设定消息
String systemMessage = role != null && StrUtil.isNotBlank(role.getSystemMessage())
@ -131,4 +135,23 @@ public class AiMindMapServiceImpl implements AiMindMapService {
return model;
}
@Override
public void deleteMindMap(Long id) {
// 校验存在
validateMindMapExists(id);
// 删除
mindMapMapper.deleteById(id);
}
private void validateMindMapExists(Long id) {
if (mindMapMapper.selectById(id) == null) {
throw exception(MIND_MAP_NOT_EXISTS);
}
}
@Override
public PageResult<AiMindMapDO> getMindMapPage(AiMindMapPageReqVO pageReqVO) {
return mindMapMapper.selectPage(pageReqVO);
}
}

View File

@ -23,12 +23,16 @@
<artifactId>spring-ai-zhipuai-spring-boot-starter</artifactId>
<version>${spring-ai.version}</version>
</dependency>
<dependency>
<groupId>org.springframework.ai</groupId>
<artifactId>spring-ai-openai-spring-boot-starter</artifactId>
<version>${spring-ai.version}</version>
</dependency>
<dependency>
<groupId>org.springframework.ai</groupId>
<artifactId>spring-ai-azure-openai-spring-boot-starter</artifactId>
<version>${spring-ai.version}</version>
</dependency>
<dependency>
<groupId>org.springframework.ai</groupId>
<artifactId>spring-ai-ollama-spring-boot-starter</artifactId>
@ -40,6 +44,30 @@
<version>${spring-ai.version}</version>
</dependency>
<!-- 向量化,基于 Redis 存储Tika 解析内容 -->
<dependency>
<groupId>org.springframework.ai</groupId>
<artifactId>spring-ai-transformers-spring-boot-starter</artifactId>
<version>${spring-ai.version}</version>
</dependency>
<dependency>
<groupId>org.springframework.ai</groupId>
<artifactId>spring-ai-tika-document-reader</artifactId>
<version>${spring-ai.version}</version>
</dependency>
<dependency>
<groupId>org.springframework.ai</groupId>
<artifactId>spring-ai-redis-store</artifactId>
<version>${spring-ai.version}</version>
</dependency>
<!-- TODO @xin引入我们项目的 starter -->
<dependency>
<groupId>org.springframework.data</groupId>
<artifactId>spring-data-redis</artifactId>
<optional>true</optional>
</dependency>
<dependency>
<groupId>cn.iocoder.boot</groupId>
<artifactId>yudao-common</artifactId>

View File

@ -10,11 +10,20 @@ import cn.iocoder.yudao.framework.ai.core.model.xinghuo.XingHuoChatModel;
import cn.iocoder.yudao.framework.ai.core.model.xinghuo.XingHuoChatOptions;
import com.alibaba.cloud.ai.tongyi.TongYiAutoConfiguration;
import lombok.extern.slf4j.Slf4j;
import org.springframework.ai.autoconfigure.vectorstore.redis.RedisVectorStoreProperties;
import org.springframework.ai.document.MetadataMode;
import org.springframework.ai.embedding.EmbeddingModel;
import org.springframework.ai.transformer.splitter.TokenTextSplitter;
import org.springframework.ai.transformers.TransformersEmbeddingModel;
import org.springframework.ai.vectorstore.RedisVectorStore;
import org.springframework.boot.autoconfigure.AutoConfiguration;
import org.springframework.boot.autoconfigure.condition.ConditionalOnProperty;
import org.springframework.boot.autoconfigure.data.redis.RedisProperties;
import org.springframework.boot.context.properties.EnableConfigurationProperties;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Import;
import org.springframework.context.annotation.Lazy;
import redis.clients.jedis.JedisPooled;
/**
* 芋道 AI 自动配置
@ -73,4 +82,36 @@ public class YudaoAiAutoConfiguration {
return new SunoApi(yudaoAiProperties.getSuno().getBaseUrl());
}
// ========== rag 相关 ==========
@Bean
@Lazy // TODO 芋艿临时注释避免无法启动
public EmbeddingModel transformersEmbeddingClient() {
return new TransformersEmbeddingModel(MetadataMode.EMBED);
}
/**
* 我们启动有加载很多 Embedding 模型不晓得取哪个好 new TransformersEmbeddingModel
*/
@Bean
@Lazy // TODO 芋艿临时注释避免无法启动
public RedisVectorStore vectorStore(TransformersEmbeddingModel transformersEmbeddingModel, RedisVectorStoreProperties properties,
RedisProperties redisProperties) {
var config = RedisVectorStore.RedisVectorStoreConfig.builder()
.withIndexName(properties.getIndex())
.withPrefix(properties.getPrefix())
.build();
RedisVectorStore redisVectorStore = new RedisVectorStore(config, transformersEmbeddingModel,
new JedisPooled(redisProperties.getHost(), redisProperties.getPort()),
properties.isInitializeSchema());
redisVectorStore.afterPropertiesSet();
return redisVectorStore;
}
@Bean
@Lazy // TODO 芋艿临时注释避免无法启动
public TokenTextSplitter tokenTextSplitter() {
return new TokenTextSplitter(500, 100, 5, 10000, true);
}
}

View File

@ -22,7 +22,8 @@ public enum AiPlatformEnum {
// ========== 国外平台 ==========
OPENAI("OpenAI", "OpenAI"),
OPENAI("OpenAI", "OpenAI"), // OpenAI 官方
AZURE_OPENAI("AzureOpenAI", "AzureOpenAI"), // OpenAI 微软
OLLAMA("Ollama", "Ollama"),
STABLE_DIFFUSION("StableDiffusion", "StableDiffusion"), // Stability AI

View File

@ -21,6 +21,10 @@ import com.alibaba.cloud.ai.tongyi.image.TongYiImagesModel;
import com.alibaba.cloud.ai.tongyi.image.TongYiImagesProperties;
import com.alibaba.dashscope.aigc.generation.Generation;
import com.alibaba.dashscope.aigc.imagesynthesis.ImageSynthesis;
import com.azure.ai.openai.OpenAIClient;
import org.springframework.ai.autoconfigure.azure.openai.AzureOpenAiAutoConfiguration;
import org.springframework.ai.autoconfigure.azure.openai.AzureOpenAiChatProperties;
import org.springframework.ai.autoconfigure.azure.openai.AzureOpenAiConnectionProperties;
import org.springframework.ai.autoconfigure.ollama.OllamaAutoConfiguration;
import org.springframework.ai.autoconfigure.openai.OpenAiAutoConfiguration;
import org.springframework.ai.autoconfigure.qianfan.QianFanAutoConfiguration;
@ -31,6 +35,7 @@ import org.springframework.ai.autoconfigure.zhipuai.ZhiPuAiAutoConfiguration;
import org.springframework.ai.autoconfigure.zhipuai.ZhiPuAiChatProperties;
import org.springframework.ai.autoconfigure.zhipuai.ZhiPuAiConnectionProperties;
import org.springframework.ai.autoconfigure.zhipuai.ZhiPuAiImageProperties;
import org.springframework.ai.azure.openai.AzureOpenAiChatModel;
import org.springframework.ai.chat.model.ChatModel;
import org.springframework.ai.image.ImageModel;
import org.springframework.ai.model.function.FunctionCallbackContext;
@ -82,6 +87,8 @@ public class AiModelFactoryImpl implements AiModelFactory {
return buildXingHuoChatModel(apiKey);
case OPENAI:
return buildOpenAiChatModel(apiKey, url);
case AZURE_OPENAI:
return buildAzureOpenAiChatModel(apiKey, url);
case OLLAMA:
return buildOllamaChatModel(url);
default:
@ -106,6 +113,8 @@ public class AiModelFactoryImpl implements AiModelFactory {
return SpringUtil.getBean(XingHuoChatModel.class);
case OPENAI:
return SpringUtil.getBean(OpenAiChatModel.class);
case AZURE_OPENAI:
return SpringUtil.getBean(AzureOpenAiChatModel.class);
case OLLAMA:
return SpringUtil.getBean(OllamaChatModel.class);
default:
@ -268,6 +277,21 @@ public class AiModelFactoryImpl implements AiModelFactory {
return new OpenAiChatModel(openAiApi);
}
/**
* 可参考 {@link AzureOpenAiAutoConfiguration}
*/
private static AzureOpenAiChatModel buildAzureOpenAiChatModel(String apiKey, String url) {
AzureOpenAiAutoConfiguration azureOpenAiAutoConfiguration = new AzureOpenAiAutoConfiguration();
// 创建 OpenAIClient 对象
AzureOpenAiConnectionProperties connectionProperties = new AzureOpenAiConnectionProperties();
connectionProperties.setApiKey(apiKey);
connectionProperties.setEndpoint(url);
OpenAIClient openAIClient = azureOpenAiAutoConfiguration.openAIClient(connectionProperties);
// 获取 AzureOpenAiChatProperties 对象
AzureOpenAiChatProperties chatProperties = SpringUtil.getBean(AzureOpenAiChatProperties.class);
return azureOpenAiAutoConfiguration.azureOpenAiChatModel(openAIClient, chatProperties, null, null);
}
/**
* 可参考 {@link OpenAiAutoConfiguration}
*/

View File

@ -5,6 +5,7 @@ import cn.iocoder.yudao.framework.ai.core.enums.AiPlatformEnum;
import cn.iocoder.yudao.framework.ai.core.model.deepseek.DeepSeekChatOptions;
import cn.iocoder.yudao.framework.ai.core.model.xinghuo.XingHuoChatOptions;
import com.alibaba.cloud.ai.tongyi.chat.TongYiChatOptions;
import org.springframework.ai.azure.openai.AzureOpenAiChatOptions;
import org.springframework.ai.chat.messages.*;
import org.springframework.ai.chat.prompt.ChatOptions;
import org.springframework.ai.ollama.api.OllamaOptions;
@ -35,6 +36,9 @@ public class AiUtils {
return XingHuoChatOptions.builder().model(model).temperature(temperatureF).maxTokens(maxTokens).build();
case OPENAI:
return OpenAiChatOptions.builder().withModel(model).withTemperature(temperatureF).withMaxTokens(maxTokens).build();
case AZURE_OPENAI:
// TODO 芋艿貌似没 model 字段
return AzureOpenAiChatOptions.builder().withDeploymentName(model).withTemperature(temperatureF).withMaxTokens(maxTokens).build();
case OLLAMA:
return OllamaOptions.create().withModel(model).withTemperature(temperatureF).withNumPredict(maxTokens);
default:

View File

@ -0,0 +1,59 @@
/*
* Copyright 2023 - 2024 the original author or authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.springframework.ai.autoconfigure.vectorstore.redis;
import org.springframework.ai.embedding.EmbeddingModel;
import org.springframework.ai.vectorstore.RedisVectorStore;
import org.springframework.ai.vectorstore.RedisVectorStore.RedisVectorStoreConfig;
import org.springframework.boot.autoconfigure.AutoConfiguration;
import org.springframework.boot.autoconfigure.condition.ConditionalOnClass;
import org.springframework.boot.autoconfigure.condition.ConditionalOnMissingBean;
import org.springframework.boot.autoconfigure.data.redis.RedisAutoConfiguration;
import org.springframework.boot.context.properties.EnableConfigurationProperties;
import org.springframework.context.annotation.Bean;
import org.springframework.data.redis.connection.jedis.JedisConnectionFactory;
import redis.clients.jedis.JedisPooled;
/**
* TODO @xin 先拿 spring-ai 最新代码覆盖1.0.0-M1 redis 自动配置会冲突
*
* TODO 这个官方有说啥时候 fix
*
* @author Christian Tzolov
* @author Eddú Meléndez
*/
@AutoConfiguration(after = RedisAutoConfiguration.class)
@ConditionalOnClass({JedisPooled.class, JedisConnectionFactory.class, RedisVectorStore.class, EmbeddingModel.class})
//@ConditionalOnBean(JedisConnectionFactory.class)
@EnableConfigurationProperties(RedisVectorStoreProperties.class)
public class RedisVectorStoreAutoConfiguration {
@Bean
@ConditionalOnMissingBean
public RedisVectorStore vectorStore(EmbeddingModel embeddingModel, RedisVectorStoreProperties properties,
JedisConnectionFactory jedisConnectionFactory) {
var config = RedisVectorStoreConfig.builder()
.withIndexName(properties.getIndex())
.withPrefix(properties.getPrefix())
.build();
return new RedisVectorStore(config, embeddingModel,
new JedisPooled(jedisConnectionFactory.getHostName(), jedisConnectionFactory.getPort()),
properties.isInitializeSchema());
}
}

View File

@ -0,0 +1,456 @@
/*
* Copyright 2023 - 2024 the original author or authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.springframework.ai.vectorstore;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.ai.document.Document;
import org.springframework.ai.embedding.EmbeddingModel;
import org.springframework.ai.vectorstore.filter.FilterExpressionConverter;
import org.springframework.beans.factory.InitializingBean;
import org.springframework.util.Assert;
import org.springframework.util.CollectionUtils;
import redis.clients.jedis.JedisPooled;
import redis.clients.jedis.Pipeline;
import redis.clients.jedis.json.Path2;
import redis.clients.jedis.search.*;
import redis.clients.jedis.search.Schema.FieldType;
import redis.clients.jedis.search.schemafields.*;
import redis.clients.jedis.search.schemafields.VectorField.VectorAlgorithm;
import java.text.MessageFormat;
import java.util.*;
import java.util.function.Function;
import java.util.function.Predicate;
import java.util.stream.Collectors;
/**
* The RedisVectorStore is for managing and querying vector data in a Redis database. It
* offers functionalities like adding, deleting, and performing similarity searches on
* documents.
*
* The store utilizes RedisJSON and RedisSearch to handle JSON documents and to index and
* search vector data. It supports various vector algorithms (e.g., FLAT, HSNW) for
* efficient similarity searches. Additionally, it allows for custom metadata fields in
* the documents to be stored alongside the vector and content data.
*
* This class requires a RedisVectorStoreConfig configuration object for initialization,
* which includes settings like Redis URI, index name, field names, and vector algorithms.
* It also requires an EmbeddingModel to convert documents into embeddings before storing
* them.
*
* @author Julien Ruaux
* @author Christian Tzolov
* @author Eddú Meléndez
* @see VectorStore
* @see RedisVectorStoreConfig
* @see EmbeddingModel
*/
public class RedisVectorStore implements VectorStore, InitializingBean {
public enum Algorithm {
FLAT, HSNW
}
public record MetadataField(String name, FieldType fieldType) {
public static MetadataField text(String name) {
return new MetadataField(name, FieldType.TEXT);
}
public static MetadataField numeric(String name) {
return new MetadataField(name, FieldType.NUMERIC);
}
public static MetadataField tag(String name) {
return new MetadataField(name, FieldType.TAG);
}
}
/**
* Configuration for the Redis vector store.
*/
public static final class RedisVectorStoreConfig {
private final String indexName;
private final String prefix;
private final String contentFieldName;
private final String embeddingFieldName;
private final Algorithm vectorAlgorithm;
private final List<MetadataField> metadataFields;
private RedisVectorStoreConfig() {
this(builder());
}
private RedisVectorStoreConfig(Builder builder) {
this.indexName = builder.indexName;
this.prefix = builder.prefix;
this.contentFieldName = builder.contentFieldName;
this.embeddingFieldName = builder.embeddingFieldName;
this.vectorAlgorithm = builder.vectorAlgorithm;
this.metadataFields = builder.metadataFields;
}
/**
* Start building a new configuration.
* @return The entry point for creating a new configuration.
*/
public static Builder builder() {
return new Builder();
}
/**
* {@return the default config}
*/
public static RedisVectorStoreConfig defaultConfig() {
return builder().build();
}
public static class Builder {
private String indexName = DEFAULT_INDEX_NAME;
private String prefix = DEFAULT_PREFIX;
private String contentFieldName = DEFAULT_CONTENT_FIELD_NAME;
private String embeddingFieldName = DEFAULT_EMBEDDING_FIELD_NAME;
private Algorithm vectorAlgorithm = DEFAULT_VECTOR_ALGORITHM;
private List<MetadataField> metadataFields = new ArrayList<>();
private Builder() {
}
/**
* Configures the Redis index name to use.
* @param name the index name to use
* @return this builder
*/
public Builder withIndexName(String name) {
this.indexName = name;
return this;
}
/**
* Configures the Redis key prefix to use (default: "embedding:").
* @param prefix the prefix to use
* @return this builder
*/
public Builder withPrefix(String prefix) {
this.prefix = prefix;
return this;
}
/**
* Configures the Redis content field name to use.
* @param name the content field name to use
* @return this builder
*/
public Builder withContentFieldName(String name) {
this.contentFieldName = name;
return this;
}
/**
* Configures the Redis embedding field name to use.
* @param name the embedding field name to use
* @return this builder
*/
public Builder withEmbeddingFieldName(String name) {
this.embeddingFieldName = name;
return this;
}
/**
* Configures the Redis vector algorithmto use.
* @param algorithm the vector algorithm to use
* @return this builder
*/
public Builder withVectorAlgorithm(Algorithm algorithm) {
this.vectorAlgorithm = algorithm;
return this;
}
public Builder withMetadataFields(MetadataField... fields) {
return withMetadataFields(Arrays.asList(fields));
}
public Builder withMetadataFields(List<MetadataField> fields) {
this.metadataFields = fields;
return this;
}
/**
* {@return the immutable configuration}
*/
public RedisVectorStoreConfig build() {
return new RedisVectorStoreConfig(this);
}
}
}
private final boolean initializeSchema;
public static final String DEFAULT_INDEX_NAME = "spring-ai-index";
public static final String DEFAULT_CONTENT_FIELD_NAME = "content";
public static final String DEFAULT_EMBEDDING_FIELD_NAME = "embedding";
public static final String DEFAULT_PREFIX = "embedding:";
public static final Algorithm DEFAULT_VECTOR_ALGORITHM = Algorithm.HSNW;
private static final String QUERY_FORMAT = "%s=>[KNN %s @%s $%s AS %s]";
private static final Path2 JSON_SET_PATH = Path2.of("$");
private static final String JSON_PATH_PREFIX = "$.";
private static final Logger logger = LoggerFactory.getLogger(RedisVectorStore.class);
private static final Predicate<Object> RESPONSE_OK = Predicate.isEqual("OK");
private static final Predicate<Object> RESPONSE_DEL_OK = Predicate.isEqual(1l);
private static final String VECTOR_TYPE_FLOAT32 = "FLOAT32";
private static final String EMBEDDING_PARAM_NAME = "BLOB";
public static final String DISTANCE_FIELD_NAME = "vector_score";
private static final String DEFAULT_DISTANCE_METRIC = "COSINE";
private final JedisPooled jedis;
private final EmbeddingModel embeddingModel;
private final RedisVectorStoreConfig config;
private FilterExpressionConverter filterExpressionConverter;
public RedisVectorStore(RedisVectorStoreConfig config, EmbeddingModel embeddingModel, JedisPooled jedis,
boolean initializeSchema) {
Assert.notNull(config, "Config must not be null");
Assert.notNull(embeddingModel, "Embedding model must not be null");
this.initializeSchema = initializeSchema;
this.jedis = jedis;
this.embeddingModel = embeddingModel;
this.config = config;
this.filterExpressionConverter = new RedisFilterExpressionConverter(this.config.metadataFields);
}
public JedisPooled getJedis() {
return this.jedis;
}
@Override
public void add(List<Document> documents) {
try (Pipeline pipeline = this.jedis.pipelined()) {
for (Document document : documents) {
var embedding = this.embeddingModel.embed(document);
document.setEmbedding(embedding);
var fields = new HashMap<String, Object>();
fields.put(this.config.embeddingFieldName, embedding);
fields.put(this.config.contentFieldName, document.getContent());
fields.putAll(document.getMetadata());
pipeline.jsonSetWithEscape(key(document.getId()), JSON_SET_PATH, fields);
}
List<Object> responses = pipeline.syncAndReturnAll();
Optional<Object> errResponse = responses.stream().filter(Predicate.not(RESPONSE_OK)).findAny();
if (errResponse.isPresent()) {
String message = MessageFormat.format("Could not add document: {0}", errResponse.get());
if (logger.isErrorEnabled()) {
logger.error(message);
}
throw new RuntimeException(message);
}
}
}
private String key(String id) {
return this.config.prefix + id;
}
@Override
public Optional<Boolean> delete(List<String> idList) {
try (Pipeline pipeline = this.jedis.pipelined()) {
for (String id : idList) {
pipeline.jsonDel(key(id));
}
List<Object> responses = pipeline.syncAndReturnAll();
Optional<Object> errResponse = responses.stream().filter(Predicate.not(RESPONSE_DEL_OK)).findAny();
if (errResponse.isPresent()) {
if (logger.isErrorEnabled()) {
logger.error("Could not delete document: {}", errResponse.get());
}
return Optional.of(false);
}
return Optional.of(true);
}
}
@Override
public List<Document> similaritySearch(SearchRequest request) {
Assert.isTrue(request.getTopK() > 0, "The number of documents to returned must be greater than zero");
Assert.isTrue(request.getSimilarityThreshold() >= 0 && request.getSimilarityThreshold() <= 1,
"The similarity score is bounded between 0 and 1; least to most similar respectively.");
String filter = nativeExpressionFilter(request);
String queryString = String.format(QUERY_FORMAT, filter, request.getTopK(), this.config.embeddingFieldName,
EMBEDDING_PARAM_NAME, DISTANCE_FIELD_NAME);
List<String> returnFields = new ArrayList<>();
this.config.metadataFields.stream().map(MetadataField::name).forEach(returnFields::add);
returnFields.add(this.config.embeddingFieldName);
returnFields.add(this.config.contentFieldName);
returnFields.add(DISTANCE_FIELD_NAME);
var embedding = toFloatArray(this.embeddingModel.embed(request.getQuery()));
Query query = new Query(queryString).addParam(EMBEDDING_PARAM_NAME, RediSearchUtil.toByteArray(embedding))
.returnFields(returnFields.toArray(new String[0]))
.setSortBy(DISTANCE_FIELD_NAME, true)
.dialect(2);
SearchResult result = this.jedis.ftSearch(this.config.indexName, query);
return result.getDocuments()
.stream()
.filter(d -> similarityScore(d) >= request.getSimilarityThreshold())
.map(this::toDocument)
.toList();
}
private Document toDocument(redis.clients.jedis.search.Document doc) {
var id = doc.getId().substring(this.config.prefix.length());
var content = doc.hasProperty(this.config.contentFieldName) ? doc.getString(this.config.contentFieldName)
: null;
Map<String, Object> metadata = this.config.metadataFields.stream()
.map(MetadataField::name)
.filter(doc::hasProperty)
.collect(Collectors.toMap(Function.identity(), doc::getString));
metadata.put(DISTANCE_FIELD_NAME, 1 - similarityScore(doc));
return new Document(id, content, metadata);
}
private float similarityScore(redis.clients.jedis.search.Document doc) {
return (2 - Float.parseFloat(doc.getString(DISTANCE_FIELD_NAME))) / 2;
}
private String nativeExpressionFilter(SearchRequest request) {
if (request.getFilterExpression() == null) {
return "*";
}
return "(" + this.filterExpressionConverter.convertExpression(request.getFilterExpression()) + ")";
}
@Override
public void afterPropertiesSet() {
if (!this.initializeSchema) {
return;
}
// If index already exists don't do anything
if (this.jedis.ftList().contains(this.config.indexName)) {
return;
}
String response = this.jedis.ftCreate(this.config.indexName,
FTCreateParams.createParams().on(IndexDataType.JSON).addPrefix(this.config.prefix), schemaFields());
if (!RESPONSE_OK.test(response)) {
String message = MessageFormat.format("Could not create index: {0}", response);
throw new RuntimeException(message);
}
}
private Iterable<SchemaField> schemaFields() {
Map<String, Object> vectorAttrs = new HashMap<>();
vectorAttrs.put("DIM", this.embeddingModel.dimensions());
vectorAttrs.put("DISTANCE_METRIC", DEFAULT_DISTANCE_METRIC);
vectorAttrs.put("TYPE", VECTOR_TYPE_FLOAT32);
List<SchemaField> fields = new ArrayList<>();
fields.add(TextField.of(jsonPath(this.config.contentFieldName)).as(this.config.contentFieldName).weight(1.0));
fields.add(VectorField.builder()
.fieldName(jsonPath(this.config.embeddingFieldName))
.algorithm(vectorAlgorithm())
.attributes(vectorAttrs)
.as(this.config.embeddingFieldName)
.build());
if (!CollectionUtils.isEmpty(this.config.metadataFields)) {
for (MetadataField field : this.config.metadataFields) {
fields.add(schemaField(field));
}
}
return fields;
}
private SchemaField schemaField(MetadataField field) {
String fieldName = jsonPath(field.name);
switch (field.fieldType) {
case NUMERIC:
return NumericField.of(fieldName).as(field.name);
case TAG:
return TagField.of(fieldName).as(field.name);
case TEXT:
return TextField.of(fieldName).as(field.name);
default:
throw new IllegalArgumentException(
MessageFormat.format("Field {0} has unsupported type {1}", field.name, field.fieldType));
}
}
private VectorAlgorithm vectorAlgorithm() {
if (config.vectorAlgorithm == Algorithm.HSNW) {
return VectorAlgorithm.HNSW;
}
return VectorAlgorithm.FLAT;
}
private String jsonPath(String field) {
return JSON_PATH_PREFIX + field;
}
private static float[] toFloatArray(List<Double> embeddingDouble) {
float[] embeddingFloat = new float[embeddingDouble.size()];
int i = 0;
for (Double d : embeddingDouble) {
embeddingFloat[i++] = d.floatValue();
}
return embeddingFloat;
}
}

View File

@ -0,0 +1,70 @@
package cn.iocoder.yudao.framework.ai.chat;
import com.azure.ai.openai.OpenAIClient;
import com.azure.ai.openai.OpenAIClientBuilder;
import com.azure.core.credential.AzureKeyCredential;
import com.azure.core.util.ClientOptions;
import org.junit.jupiter.api.Disabled;
import org.junit.jupiter.api.Test;
import org.springframework.ai.azure.openai.AzureOpenAiChatModel;
import org.springframework.ai.azure.openai.AzureOpenAiChatOptions;
import org.springframework.ai.chat.messages.Message;
import org.springframework.ai.chat.messages.SystemMessage;
import org.springframework.ai.chat.messages.UserMessage;
import org.springframework.ai.chat.model.ChatResponse;
import org.springframework.ai.chat.prompt.Prompt;
import reactor.core.publisher.Flux;
import java.util.ArrayList;
import java.util.List;
import static org.springframework.ai.autoconfigure.azure.openai.AzureOpenAiChatProperties.DEFAULT_DEPLOYMENT_NAME;
/**
* {@link AzureOpenAiChatModel} 集成测试
*
* @author 芋道源码
*/
public class AzureOpenAIChatModelTests {
private final OpenAIClient openAiApi = (new OpenAIClientBuilder())
.endpoint("https://eastusprejade.openai.azure.com")
.credential(new AzureKeyCredential("xxx"))
.clientOptions((new ClientOptions()).setApplicationId("spring-ai"))
.buildClient();
private final AzureOpenAiChatModel chatModel = new AzureOpenAiChatModel(openAiApi,
AzureOpenAiChatOptions.builder().withDeploymentName(DEFAULT_DEPLOYMENT_NAME).build());
@Test
@Disabled
public void testCall() {
// 准备参数
List<Message> messages = new ArrayList<>();
messages.add(new SystemMessage("你是一个优质的文言文作者,用文言文描述着各城市的人文风景。"));
messages.add(new UserMessage("1 + 1 = "));
// 调用
ChatResponse response = chatModel.call(new Prompt(messages));
// 打印结果
System.out.println(response);
System.out.println(response.getResult().getOutput());
}
@Test
@Disabled
public void testStream() {
// 准备参数
List<Message> messages = new ArrayList<>();
messages.add(new SystemMessage("你是一个优质的文言文作者,用文言文描述着各城市的人文风景。"));
messages.add(new UserMessage("1 + 1 = "));
// 调用
Flux<ChatResponse> flux = chatModel.stream(new Prompt(messages));
// 打印结果
flux.doOnNext(response -> {
// System.out.println(response);
System.out.println(response.getResult().getOutput());
}).then().block();
}
}

View File

@ -1,6 +1,5 @@
package cn.iocoder.yudao.framework.ai.chat;
import cn.iocoder.yudao.framework.ai.core.model.xinghuo.XingHuoChatModel;
import org.junit.jupiter.api.Disabled;
import org.junit.jupiter.api.Test;
import org.springframework.ai.chat.messages.Message;
@ -17,7 +16,7 @@ import java.util.ArrayList;
import java.util.List;
/**
* {@link XingHuoChatModel} 集成测试
* {@link OpenAiChatModel} 集成测试
*
* @author 芋道源码
*/

View File

@ -147,14 +147,22 @@ spring:
spring:
ai:
vectorstore: # 向量存储
redis:
index: default-index
prefix: "default:"
qianfan: # 文心一言
api-key: x0cuLZ7XsaTCU08vuJWO87Lg
secret-key: R9mYF9dl9KASgi5RUq0FQt3wRisSnOcK
zhipuai: # 智谱 AI
api-key: 32f84543e54eee31f8d56b2bd6020573.3vh9idLJZ2ZhxDEs
openai:
openai: # OpenAI 官方
api-key: sk-yzKea6d8e8212c3bdd99f9f44ced1cae37c097e5aa3BTS7z
base-url: https://api.gptsapi.net
azure: # OpenAI 微软
openai:
endpoint: https://eastusprejade.openai.azure.com
api-key: xxx
ollama:
base-url: http://127.0.0.1:11434
chat: