81 lines
1.8 KiB
Java
81 lines
1.8 KiB
Java
//请定义一个队列并实现函数 max_value 得到队列里的最大值,要求函数max_value、push_back 和 pop_front 的均摊时间复杂度都
|
||
//是O(1)。
|
||
//
|
||
// 若队列为空,pop_front 和 max_value 需要返回 -1
|
||
//
|
||
// 示例 1:
|
||
//
|
||
// 输入:
|
||
//["MaxQueue","push_back","push_back","max_value","pop_front","max_value"]
|
||
//[[],[1],[2],[],[],[]]
|
||
//输出: [null,null,null,2,1,2]
|
||
//
|
||
//
|
||
// 示例 2:
|
||
//
|
||
// 输入:
|
||
//["MaxQueue","pop_front","max_value"]
|
||
//[[],[],[]]
|
||
//输出: [null,-1,-1]
|
||
//
|
||
//
|
||
//
|
||
//
|
||
// 限制:
|
||
//
|
||
//
|
||
// 1 <= push_back,pop_front,max_value的总操作数 <= 10000
|
||
// 1 <= value <= 10^5
|
||
//
|
||
// Related Topics 栈 Sliding Window
|
||
// 👍 248 👎 0
|
||
|
||
package leetcode.editor.cn;
|
||
|
||
//剑指 Offer 59 - II:队列的最大值
|
||
public class DuiLieDeZuiDaZhiLcof {
|
||
public static void main(String[] args) {
|
||
//测试代码
|
||
// Solution solution = new DuiLieDeZuiDaZhiLcof().new Solution();
|
||
}
|
||
|
||
//力扣代码
|
||
//leetcode submit region begin(Prohibit modification and deletion)
|
||
class MaxQueue {
|
||
int[] arr = new int[20000];
|
||
int start = 0, end = 0;
|
||
|
||
public MaxQueue() {
|
||
|
||
}
|
||
|
||
public int max_value() {
|
||
int ans = -1;
|
||
for (int i = start; i != end; ++i) {
|
||
ans = Math.max(ans, arr[i]);
|
||
}
|
||
return ans;
|
||
}
|
||
|
||
public void push_back(int value) {
|
||
arr[end++] = value;
|
||
}
|
||
|
||
public int pop_front() {
|
||
if (start == end) {
|
||
return -1;
|
||
}
|
||
return arr[start++];
|
||
}
|
||
}
|
||
|
||
/**
|
||
* Your MaxQueue object will be instantiated and called as such:
|
||
* MaxQueue obj = new MaxQueue();
|
||
* int param_1 = obj.max_value();
|
||
* obj.push_back(value);
|
||
* int param_3 = obj.pop_front();
|
||
*/
|
||
//leetcode submit region end(Prohibit modification and deletion)
|
||
|
||
} |