//请定义一个队列并实现函数 max_value 得到队列里的最大值,要求函数max_value、push_back 和 pop_front 的均摊时间复杂度都 //是O(1)。 // // 若队列为空,pop_front 和 max_value 需要返回 -1 // // 示例 1: // // 输入: //["MaxQueue","push_back","push_back","max_value","pop_front","max_value"] //[[],[1],[2],[],[],[]] //输出: [null,null,null,2,1,2] // // // 示例 2: // // 输入: //["MaxQueue","pop_front","max_value"] //[[],[],[]] //输出: [null,-1,-1] // // // // // 限制: // // // 1 <= push_back,pop_front,max_value的总操作数 <= 10000 // 1 <= value <= 10^5 // // Related Topics 栈 Sliding Window // 👍 248 👎 0 package leetcode.editor.cn; //剑指 Offer 59 - II:队列的最大值 public class DuiLieDeZuiDaZhiLcof { public static void main(String[] args) { //测试代码 // Solution solution = new DuiLieDeZuiDaZhiLcof().new Solution(); } //力扣代码 //leetcode submit region begin(Prohibit modification and deletion) class MaxQueue { int[] arr = new int[20000]; int start = 0, end = 0; public MaxQueue() { } public int max_value() { int ans = -1; for (int i = start; i != end; ++i) { ans = Math.max(ans, arr[i]); } return ans; } public void push_back(int value) { arr[end++] = value; } public int pop_front() { if (start == end) { return -1; } return arr[start++]; } } /** * Your MaxQueue object will be instantiated and called as such: * MaxQueue obj = new MaxQueue(); * int param_1 = obj.max_value(); * obj.push_back(value); * int param_3 = obj.pop_front(); */ //leetcode submit region end(Prohibit modification and deletion) }