//给定一个未排序的整数数组,找到最长递增子序列的个数。 // // 示例 1: // // //输入: [1,3,5,4,7] //输出: 2 //解释: 有两个最长递增子序列,分别是 [1, 3, 4, 7] 和[1, 3, 5, 7]。 // // // 示例 2: // // //输入: [2,2,2,2,2] //输出: 5 //解释: 最长递增子序列的长度是1,并且存在5个子序列的长度为1,因此输出5。 // // // 注意: 给定的数组长度不超过 2000 并且结果一定是32位有符号整数。 // Related Topics 树状数组 线段树 数组 动态规划 👍 352 👎 0 package leetcode.editor.cn; import java.util.Arrays; //673:最长递增子序列的个数 class NumberOfLongestIncreasingSubsequence { public static void main(String[] args) { //测试代码 Solution solution = new NumberOfLongestIncreasingSubsequence().new Solution(); } //力扣代码 //leetcode submit region begin(Prohibit modification and deletion) class Solution { public int findNumberOfLIS(int[] nums) { int N = nums.length; if (N <= 1) return N; int[] lengths = new int[N]; int[] counts = new int[N]; Arrays.fill(counts, 1); for (int j = 0; j < N; ++j) { for (int i = 0; i < j; ++i) { if (nums[i] < nums[j]) { if (lengths[i] >= lengths[j]) { lengths[j] = lengths[i] + 1; counts[j] = counts[i]; } else if (lengths[i] + 1 == lengths[j]) { counts[j] += counts[i]; } } } } int longest = 0, ans = 0; for (int length : lengths) { longest = Math.max(longest, length); } for (int i = 0; i < N; ++i) { if (lengths[i] == longest) { ans += counts[i]; } } return ans; } } //leetcode submit region end(Prohibit modification and deletion) }