787:K 站中转内最便宜的航班
This commit is contained in:
parent
6db6546a2c
commit
c0b77f3d14
@ -0,0 +1,149 @@
|
||||
//有 n 个城市通过一些航班连接。给你一个数组 flights ,其中 flights[i] = [fromi, toi, pricei] ,表示该航班都从城
|
||||
//市 fromi 开始,以价格 pricei 抵达 toi。
|
||||
//
|
||||
// 现在给定所有的城市和航班,以及出发城市 src 和目的地 dst,你的任务是找到出一条最多经过 k 站中转的路线,使得从 src 到 dst 的 价格最便
|
||||
//宜 ,并返回该价格。 如果不存在这样的路线,则输出 -1。
|
||||
//
|
||||
//
|
||||
//
|
||||
// 示例 1:
|
||||
//
|
||||
//
|
||||
//输入:
|
||||
//n = 3, edges = [[0,1,100],[1,2,100],[0,2,500]]
|
||||
//src = 0, dst = 2, k = 1
|
||||
//输出: 200
|
||||
//解释:
|
||||
//城市航班图如下
|
||||
//
|
||||
//
|
||||
//从城市 0 到城市 2 在 1 站中转以内的最便宜价格是 200,如图中红色所示。
|
||||
//
|
||||
// 示例 2:
|
||||
//
|
||||
//
|
||||
//输入:
|
||||
//n = 3, edges = [[0,1,100],[1,2,100],[0,2,500]]
|
||||
//src = 0, dst = 2, k = 0
|
||||
//输出: 500
|
||||
//解释:
|
||||
//城市航班图如下
|
||||
//
|
||||
//
|
||||
//从城市 0 到城市 2 在 0 站中转以内的最便宜价格是 500,如图中蓝色所示。
|
||||
//
|
||||
//
|
||||
//
|
||||
// 提示:
|
||||
//
|
||||
//
|
||||
// 1 <= n <= 100
|
||||
// 0 <= flights.length <= (n * (n - 1) / 2)
|
||||
// flights[i].length == 3
|
||||
// 0 <= fromi, toi < n
|
||||
// fromi != toi
|
||||
// 1 <= pricei <= 10⁴
|
||||
// 航班没有重复,且不存在自环
|
||||
// 0 <= src, dst, k < n
|
||||
// src != dst
|
||||
//
|
||||
// Related Topics 深度优先搜索 广度优先搜索 图 动态规划 最短路 堆(优先队列) 👍 340 👎 0
|
||||
|
||||
package leetcode.editor.cn;
|
||||
|
||||
import com.code.leet.entiy.TwoArray;
|
||||
|
||||
import java.util.*;
|
||||
|
||||
//787:K 站中转内最便宜的航班
|
||||
class CheapestFlightsWithinKStops {
|
||||
public static void main(String[] args) {
|
||||
//测试代码
|
||||
Solution solution = new CheapestFlightsWithinKStops().new Solution();
|
||||
// TwoArray flights = new TwoArray("[[0,1,100],[1,2,100],[0,2,500]]", true);
|
||||
// System.out.println(solution.findCheapestPrice(3, flights.getArr(), 0, 2, 1));
|
||||
// TwoArray flights = new TwoArray("[[4,1,1],[1,2,3],[0,3,2],[0,4,10],[3,1,1],[1,4,3]]", true);
|
||||
// System.out.println(solution.findCheapestPrice(5, flights.getArr(), 2, 1, 1));
|
||||
TwoArray flights = new TwoArray("[[1,2,10],[2,0,7],[1,3,8],[4,0,10],[3,4,2],[4,2,10],[0,3,3],[3,1,6],[2,4,5]]", true);
|
||||
System.out.println(solution.findCheapestPrice(5, flights.getArr(), 0, 4, 1));
|
||||
}
|
||||
|
||||
//力扣代码
|
||||
//leetcode submit region begin(Prohibit modification and deletion)
|
||||
class Solution {
|
||||
public int findCheapestPrice(int n, int[][] flights, int src, int dst, int k) {
|
||||
k++;
|
||||
Map<Integer, List<int[]>> prices = new HashMap<>();
|
||||
Queue<QueueEntity> queue = new LinkedList<>();
|
||||
int[] sums = new int[n];
|
||||
Arrays.fill(sums, Integer.MAX_VALUE);
|
||||
for (int[] flight : flights) {
|
||||
List<int[]> list = prices.getOrDefault(flight[0], new ArrayList<>());
|
||||
list.add(new int[]{flight[1], flight[2]});
|
||||
prices.put(flight[0], list);
|
||||
}
|
||||
queue.add(new QueueEntity(src, 0, new ArrayList<>(Collections.singletonList(src))));
|
||||
while (k > 0 && !queue.isEmpty()) {
|
||||
int size = queue.size();
|
||||
for (int i = 0; i < size; i++) {
|
||||
QueueEntity queueEntity = queue.poll();
|
||||
List<Integer> use = queueEntity.use;
|
||||
if (!prices.containsKey(queueEntity.flight)) {
|
||||
continue;
|
||||
}
|
||||
for (int[] arr : prices.get(queueEntity.flight)) {
|
||||
if (queueEntity.sum + arr[1] >= sums[arr[0]] || queueEntity.use.contains(arr[0])) {
|
||||
continue;
|
||||
}
|
||||
if (arr[0] != dst) {
|
||||
use.add(arr[0]);
|
||||
queue.add(new QueueEntity(arr[0], queueEntity.sum + arr[1], use));
|
||||
use.remove((Integer)arr[0]);
|
||||
}
|
||||
sums[arr[0]] = queueEntity.sum + arr[1];
|
||||
}
|
||||
}
|
||||
k--;
|
||||
}
|
||||
return sums[dst] == Integer.MAX_VALUE ? -1 : sums[dst];
|
||||
}
|
||||
|
||||
class QueueEntity {
|
||||
int flight;
|
||||
int sum;
|
||||
List<Integer> use;
|
||||
|
||||
public QueueEntity(int flight, int sum, List<Integer> use) {
|
||||
this.flight = flight;
|
||||
this.sum = sum;
|
||||
this.use = use;
|
||||
}
|
||||
|
||||
public int getFlight() {
|
||||
return flight;
|
||||
}
|
||||
|
||||
public void setFlight(int flight) {
|
||||
this.flight = flight;
|
||||
}
|
||||
|
||||
public int getSum() {
|
||||
return sum;
|
||||
}
|
||||
|
||||
public void setSum(int sum) {
|
||||
this.sum = sum;
|
||||
}
|
||||
|
||||
public List<Integer> getUse() {
|
||||
return use;
|
||||
}
|
||||
|
||||
public void setUse(List<Integer> use) {
|
||||
this.use = use;
|
||||
}
|
||||
}
|
||||
}
|
||||
//leetcode submit region end(Prohibit modification and deletion)
|
||||
|
||||
}
|
File diff suppressed because one or more lines are too long
@ -0,0 +1,48 @@
|
||||
<p>有 <code>n</code> 个城市通过一些航班连接。给你一个数组 <code>flights</code> ,其中 <code>flights[i] = [from<sub>i</sub>, to<sub>i</sub>, price<sub>i</sub>]</code> ,表示该航班都从城市 <code>from<sub>i</sub></code> 开始,以价格 <code>price<sub>i</sub></code> 抵达 <code>to<sub>i</sub></code>。</p>
|
||||
|
||||
<p>现在给定所有的城市和航班,以及出发城市 <code>src</code> 和目的地 <code>dst</code>,你的任务是找到出一条最多经过 <code>k</code> 站中转的路线,使得从 <code>src</code> 到 <code>dst</code> 的 <strong>价格最便宜</strong> ,并返回该价格。 如果不存在这样的路线,则输出 <code>-1</code>。</p>
|
||||
|
||||
<p> </p>
|
||||
|
||||
<p><strong>示例 1:</strong></p>
|
||||
|
||||
<pre>
|
||||
<strong>输入:</strong>
|
||||
n = 3, edges = [[0,1,100],[1,2,100],[0,2,500]]
|
||||
src = 0, dst = 2, k = 1
|
||||
<strong>输出:</strong> 200
|
||||
<strong>解释:</strong>
|
||||
城市航班图如下
|
||||
<img alt="" src="https://s3-lc-upload.s3.amazonaws.com/uploads/2018/02/16/995.png" style="height: 180px; width: 246px;" />
|
||||
|
||||
从城市 0 到城市 2 在 1 站中转以内的最便宜价格是 200,如图中红色所示。</pre>
|
||||
|
||||
<p><strong>示例 2:</strong></p>
|
||||
|
||||
<pre>
|
||||
<strong>输入:</strong>
|
||||
n = 3, edges = [[0,1,100],[1,2,100],[0,2,500]]
|
||||
src = 0, dst = 2, k = 0
|
||||
<strong>输出:</strong> 500
|
||||
<strong>解释:</strong>
|
||||
城市航班图如下
|
||||
<img alt="" src="https://s3-lc-upload.s3.amazonaws.com/uploads/2018/02/16/995.png" style="height: 180px; width: 246px;" />
|
||||
|
||||
从城市 0 到城市 2 在 0 站中转以内的最便宜价格是 500,如图中蓝色所示。</pre>
|
||||
|
||||
<p> </p>
|
||||
|
||||
<p><strong>提示:</strong></p>
|
||||
|
||||
<ul>
|
||||
<li><code>1 <= n <= 100</code></li>
|
||||
<li><code>0 <= flights.length <= (n * (n - 1) / 2)</code></li>
|
||||
<li><code>flights[i].length == 3</code></li>
|
||||
<li><code>0 <= from<sub>i</sub>, to<sub>i</sub> < n</code></li>
|
||||
<li><code>from<sub>i</sub> != to<sub>i</sub></code></li>
|
||||
<li><code>1 <= price<sub>i</sub> <= 10<sup>4</sup></code></li>
|
||||
<li>航班没有重复,且不存在自环</li>
|
||||
<li><code>0 <= src, dst, k < n</code></li>
|
||||
<li><code>src != dst</code></li>
|
||||
</ul>
|
||||
<div><div>Related Topics</div><div><li>深度优先搜索</li><li>广度优先搜索</li><li>图</li><li>动态规划</li><li>最短路</li><li>堆(优先队列)</li></div></div><br><div><li>👍 340</li><li>👎 0</li></div>
|
Loading…
Reference in New Issue
Block a user