787:K 站中转内最便宜的航班

This commit is contained in:
huangge1199 2021-08-24 13:57:56 +08:00
parent 6db6546a2c
commit c0b77f3d14
3 changed files with 198 additions and 1 deletions

View File

@ -0,0 +1,149 @@
// n 个城市通过一些航班连接给你一个数组 flights 其中 flights[i] = [fromi, toi, pricei] 表示该航班都从城
// fromi 开始以价格 pricei 抵达 toi
//
// 现在给定所有的城市和航班以及出发城市 src 和目的地 dst你的任务是找到出一条最多经过 k 站中转的路线使得从 src dst 价格最便
// 并返回该价格 如果不存在这样的路线则输出 -1
//
//
//
// 示例 1
//
//
//输入:
//n = 3, edges = [[0,1,100],[1,2,100],[0,2,500]]
//src = 0, dst = 2, k = 1
//输出: 200
//解释:
//城市航班图如下
//
//
//从城市 0 到城市 2 1 站中转以内的最便宜价格是 200如图中红色所示
//
// 示例 2
//
//
//输入:
//n = 3, edges = [[0,1,100],[1,2,100],[0,2,500]]
//src = 0, dst = 2, k = 0
//输出: 500
//解释:
//城市航班图如下
//
//
//从城市 0 到城市 2 0 站中转以内的最便宜价格是 500如图中蓝色所示
//
//
//
// 提示
//
//
// 1 <= n <= 100
// 0 <= flights.length <= (n * (n - 1) / 2)
// flights[i].length == 3
// 0 <= fromi, toi < n
// fromi != toi
// 1 <= pricei <= 10
// 航班没有重复且不存在自环
// 0 <= src, dst, k < n
// src != dst
//
// Related Topics 深度优先搜索 广度优先搜索 动态规划 最短路 优先队列 👍 340 👎 0
package leetcode.editor.cn;
import com.code.leet.entiy.TwoArray;
import java.util.*;
//787:K 站中转内最便宜的航班
class CheapestFlightsWithinKStops {
public static void main(String[] args) {
//测试代码
Solution solution = new CheapestFlightsWithinKStops().new Solution();
// TwoArray flights = new TwoArray("[[0,1,100],[1,2,100],[0,2,500]]", true);
// System.out.println(solution.findCheapestPrice(3, flights.getArr(), 0, 2, 1));
// TwoArray flights = new TwoArray("[[4,1,1],[1,2,3],[0,3,2],[0,4,10],[3,1,1],[1,4,3]]", true);
// System.out.println(solution.findCheapestPrice(5, flights.getArr(), 2, 1, 1));
TwoArray flights = new TwoArray("[[1,2,10],[2,0,7],[1,3,8],[4,0,10],[3,4,2],[4,2,10],[0,3,3],[3,1,6],[2,4,5]]", true);
System.out.println(solution.findCheapestPrice(5, flights.getArr(), 0, 4, 1));
}
//力扣代码
//leetcode submit region begin(Prohibit modification and deletion)
class Solution {
public int findCheapestPrice(int n, int[][] flights, int src, int dst, int k) {
k++;
Map<Integer, List<int[]>> prices = new HashMap<>();
Queue<QueueEntity> queue = new LinkedList<>();
int[] sums = new int[n];
Arrays.fill(sums, Integer.MAX_VALUE);
for (int[] flight : flights) {
List<int[]> list = prices.getOrDefault(flight[0], new ArrayList<>());
list.add(new int[]{flight[1], flight[2]});
prices.put(flight[0], list);
}
queue.add(new QueueEntity(src, 0, new ArrayList<>(Collections.singletonList(src))));
while (k > 0 && !queue.isEmpty()) {
int size = queue.size();
for (int i = 0; i < size; i++) {
QueueEntity queueEntity = queue.poll();
List<Integer> use = queueEntity.use;
if (!prices.containsKey(queueEntity.flight)) {
continue;
}
for (int[] arr : prices.get(queueEntity.flight)) {
if (queueEntity.sum + arr[1] >= sums[arr[0]] || queueEntity.use.contains(arr[0])) {
continue;
}
if (arr[0] != dst) {
use.add(arr[0]);
queue.add(new QueueEntity(arr[0], queueEntity.sum + arr[1], use));
use.remove((Integer)arr[0]);
}
sums[arr[0]] = queueEntity.sum + arr[1];
}
}
k--;
}
return sums[dst] == Integer.MAX_VALUE ? -1 : sums[dst];
}
class QueueEntity {
int flight;
int sum;
List<Integer> use;
public QueueEntity(int flight, int sum, List<Integer> use) {
this.flight = flight;
this.sum = sum;
this.use = use;
}
public int getFlight() {
return flight;
}
public void setFlight(int flight) {
this.flight = flight;
}
public int getSum() {
return sum;
}
public void setSum(int sum) {
this.sum = sum;
}
public List<Integer> getUse() {
return use;
}
public void setUse(List<Integer> use) {
this.use = use;
}
}
}
//leetcode submit region end(Prohibit modification and deletion)
}

File diff suppressed because one or more lines are too long

View File

@ -0,0 +1,48 @@
<p><code>n</code> 个城市通过一些航班连接。给你一个数组&nbsp;<code>flights</code> ,其中&nbsp;<code>flights[i] = [from<sub>i</sub>, to<sub>i</sub>, price<sub>i</sub>]</code> ,表示该航班都从城市 <code>from<sub>i</sub></code> 开始,以价格 <code>price<sub>i</sub></code> 抵达 <code>to<sub>i</sub></code></p>
<p>现在给定所有的城市和航班,以及出发城市 <code>src</code> 和目的地 <code>dst</code>,你的任务是找到出一条最多经过 <code>k</code>&nbsp;站中转的路线,使得从 <code>src</code><code>dst</code><strong>价格最便宜</strong> ,并返回该价格。 如果不存在这样的路线,则输出 <code>-1</code></p>
<p>&nbsp;</p>
<p><strong>示例 1</strong></p>
<pre>
<strong>输入:</strong>
n = 3, edges = [[0,1,100],[1,2,100],[0,2,500]]
src = 0, dst = 2, k = 1
<strong>输出:</strong> 200
<strong>解释:</strong>
城市航班图如下
<img alt="" src="https://s3-lc-upload.s3.amazonaws.com/uploads/2018/02/16/995.png" style="height: 180px; width: 246px;" />
从城市 0 到城市 2 在 1 站中转以内的最便宜价格是 200如图中红色所示。</pre>
<p><strong>示例 2</strong></p>
<pre>
<strong>输入:</strong>
n = 3, edges = [[0,1,100],[1,2,100],[0,2,500]]
src = 0, dst = 2, k = 0
<strong>输出:</strong> 500
<strong>解释:</strong>
城市航班图如下
<img alt="" src="https://s3-lc-upload.s3.amazonaws.com/uploads/2018/02/16/995.png" style="height: 180px; width: 246px;" />
从城市 0 到城市 2 在 0 站中转以内的最便宜价格是 500如图中蓝色所示。</pre>
<p>&nbsp;</p>
<p><strong>提示:</strong></p>
<ul>
<li><code>1 &lt;= n &lt;= 100</code></li>
<li><code>0 &lt;= flights.length &lt;= (n * (n - 1) / 2)</code></li>
<li><code>flights[i].length == 3</code></li>
<li><code>0 &lt;= from<sub>i</sub>, to<sub>i</sub> &lt; n</code></li>
<li><code>from<sub>i</sub> != to<sub>i</sub></code></li>
<li><code>1 &lt;= price<sub>i</sub> &lt;= 10<sup>4</sup></code></li>
<li>航班没有重复,且不存在自环</li>
<li><code>0 &lt;= src, dst, k &lt; n</code></li>
<li><code>src != dst</code></li>
</ul>
<div><div>Related Topics</div><div><li>深度优先搜索</li><li>广度优先搜索</li><li></li><li>动态规划</li><li>最短路</li><li>堆(优先队列)</li></div></div><br><div><li>👍 340</li><li>👎 0</li></div>