208:实现 Trie (前缀树)

This commit is contained in:
huangge1199 2021-04-14 10:57:15 +08:00
parent 32e88e7d8a
commit be10ce0975
3 changed files with 195 additions and 1 deletions

View File

@ -0,0 +1,152 @@
//Trie发音类似 "try"或者说 前缀树 是一种树形数据结构用于高效地存储和检索字符串数据集中的键这一数据结构有相当多的应用情景例如自动补完和拼
//写检查
//
// 请你实现 Trie
//
//
// Trie() 初始化前缀树对象
// void insert(String word) 向前缀树中插入字符串 word
// boolean search(String word) 如果字符串 word 在前缀树中返回 true在检索之前已经插入否则返回 false
//
// boolean startsWith(String prefix) 如果之前已经插入的字符串 word 的前缀之一为 prefix 返回 true
//返回 false
//
//
//
//
// 示例
//
//
//输入
//["Trie", "insert", "search", "search", "startsWith", "insert", "search"]
//[[], ["apple"], ["apple"], ["app"], ["app"], ["app"], ["app"]]
//输出
//[null, null, true, false, true, null, true]
//
//解释
//Trie trie = new Trie();
//trie.insert("apple");
//trie.search("apple"); // 返回 True
//trie.search("app"); // 返回 False
//trie.startsWith("app"); // 返回 True
//trie.insert("app");
//trie.search("app"); // 返回 True
//
//
//
//
// 提示
//
//
// 1 <= word.length, prefix.length <= 2000
// word prefix 仅由小写英文字母组成
// insertsearch startsWith 调用次数 总计 不超过 3 * 104
//
// Related Topics 设计 字典树
// 👍 618 👎 0
package leetcode.editor.cn;
import com.code.leet.entiy.TreeNode;
//208:实现 Trie (前缀树)
public class ImplementTriePrefixTree {
public static void main(String[] args) {
//测试代码
Trie trie = new ImplementTriePrefixTree().new Trie();
String[] op = new String[]{"insert", "search", "search", "startsWith", "insert", "search"};
String[] value = new String[]{"apple", "apple", "app", "app", "app", "app"};
int size = op.length;
for (int i = 0; i < size; i++) {
switch (op[i]) {
case "insert":
trie.insert(value[i]);
System.out.println("insert");
break;
case "search":
System.out.println(trie.search(value[i]));
break;
case "startsWith":
System.out.println(trie.startsWith(value[i]));
break;
default:
break;
}
}
}
//力扣代码
//leetcode submit region begin(Prohibit modification and deletion)
class Trie {
private Trie[] son;
private boolean isEnd;
/**
* Initialize your data structure here.
*/
public Trie() {
son = new Trie[26];
isEnd = false;
}
/**
* Inserts a word into the trie.
*/
public void insert(String word) {
Trie trie = this;
for (int i = 0; i < word.length(); i++) {
char ch = word.charAt(i);
int index = ch - 'a';
if (trie.son[index] == null) {
trie.son[index] = new Trie();
}
trie = trie.son[index];
}
trie.isEnd = true;
}
/**
* Returns if the word is in the trie.
*/
public boolean search(String word) {
Trie trie = this;
int size = word.length();
for (int i = 0; i < size; i++) {
int index = word.charAt(i) - 'a';
if (trie.son[index] == null) {
return false;
}
if (i == size-1 && !trie.son[index].isEnd) {
return false;
}
trie = trie.son[index];
}
return true;
}
/**
* Returns if there is any word in the trie that starts with the given prefix.
*/
public boolean startsWith(String prefix) {
Trie trie = this;
for (char ch : prefix.toCharArray()) {
int index = ch - 'a';
if (trie.son[index] == null) {
return false;
}
trie = trie.son[index];
}
return true;
}
}
/**
* Your Trie object will be instantiated and called as such:
* Trie obj = new Trie();
* obj.insert(word);
* boolean param_2 = obj.search(word);
* boolean param_3 = obj.startsWith(prefix);
*/
//leetcode submit region end(Prohibit modification and deletion)
}

View File

@ -0,0 +1,42 @@
<p><strong><a href="https://baike.baidu.com/item/字典树/9825209?fr=aladdin" target="_blank">Trie</a></strong>(发音类似 "try")或者说 <strong>前缀树</strong> 是一种树形数据结构,用于高效地存储和检索字符串数据集中的键。这一数据结构有相当多的应用情景,例如自动补完和拼写检查。</p>
<p>请你实现 Trie 类:</p>
<ul>
<li><code>Trie()</code> 初始化前缀树对象。</li>
<li><code>void insert(String word)</code> 向前缀树中插入字符串 <code>word</code></li>
<li><code>boolean search(String word)</code> 如果字符串 <code>word</code> 在前缀树中,返回 <code>true</code>(即,在检索之前已经插入);否则,返回 <code>false</code></li>
<li><code>boolean startsWith(String prefix)</code> 如果之前已经插入的字符串 <code>word</code> 的前缀之一为 <code>prefix</code> ,返回 <code>true</code> ;否则,返回 <code>false</code></li>
</ul>
<p> </p>
<p><strong>示例:</strong></p>
<pre>
<strong>输入</strong>
["Trie", "insert", "search", "search", "startsWith", "insert", "search"]
[[], ["apple"], ["apple"], ["app"], ["app"], ["app"], ["app"]]
<strong>输出</strong>
[null, null, true, false, true, null, true]
<strong>解释</strong>
Trie trie = new Trie();
trie.insert("apple");
trie.search("apple"); // 返回 True
trie.search("app"); // 返回 False
trie.startsWith("app"); // 返回 True
trie.insert("app");
trie.search("app"); // 返回 True
</pre>
<p> </p>
<p><strong>提示:</strong></p>
<ul>
<li><code>1 <= word.length, prefix.length <= 2000</code></li>
<li><code>word</code><code>prefix</code> 仅由小写英文字母组成</li>
<li><code>insert</code><code>search</code><code>startsWith</code> 调用次数 <strong>总计</strong> 不超过 <code>3 * 10<sup>4</sup></code></li>
</ul>
<div><div>Related Topics</div><div><li>设计</li><li>字典树</li></div></div>\n<div><li>👍 619</li><li>👎 0</li></div>

File diff suppressed because one or more lines are too long