497:非重叠矩形中的随机点
This commit is contained in:
parent
d2bcdc51d1
commit
7e12d862ae
@ -0,0 +1,106 @@
|
||||
//<p>给定一个由非重叠的轴对齐矩形的数组 <code>rects</code> ,其中 <code>rects[i] = [ai, bi, xi, yi]</code> 表示 <code>(ai, bi)</code> 是第 <code>i</code> 个矩形的左下角点,<code>(xi, yi)</code> 是第 <code>i</code> 个矩形的右上角点。设计一个算法来随机挑选一个被某一矩形覆盖的整数点。矩形周长上的点也算做是被矩形覆盖。所有满足要求的点必须等概率被返回。</p>
|
||||
//
|
||||
//<p>在给定的矩形覆盖的空间内的任何整数点都有可能被返回。</p>
|
||||
//
|
||||
//<p><strong>请注意 </strong>,整数点是具有整数坐标的点。</p>
|
||||
//
|
||||
//<p>实现 <code>Solution</code> 类:</p>
|
||||
//
|
||||
//<ul>
|
||||
// <li><code>Solution(int[][] rects)</code> 用给定的矩形数组 <code>rects</code> 初始化对象。</li>
|
||||
// <li><code>int[] pick()</code> 返回一个随机的整数点 <code>[u, v]</code> 在给定的矩形所覆盖的空间内。</li>
|
||||
//</ul>
|
||||
//
|
||||
//<ol>
|
||||
//</ol>
|
||||
//
|
||||
//<p> </p>
|
||||
//
|
||||
//<p><strong>示例 1:</strong></p>
|
||||
//
|
||||
//<p><img src="https://assets.leetcode.com/uploads/2021/07/24/lc-pickrandomrec.jpg" style="height: 539px; width: 419px;" /></p>
|
||||
//
|
||||
//<pre>
|
||||
//<strong>输入:
|
||||
//</strong>["Solution", "pick", "pick", "pick", "pick", "pick"]
|
||||
//[[[[-2, -2, 1, 1], [2, 2, 4, 6]]], [], [], [], [], []]
|
||||
//<strong>输出:
|
||||
//</strong>[null, [1, -2], [1, -1], [-1, -2], [-2, -2], [0, 0]]
|
||||
//
|
||||
//<strong>解释:</strong>
|
||||
//Solution solution = new Solution([[-2, -2, 1, 1], [2, 2, 4, 6]]);
|
||||
//solution.pick(); // 返回 [1, -2]
|
||||
//solution.pick(); // 返回 [1, -1]
|
||||
//solution.pick(); // 返回 [-1, -2]
|
||||
//solution.pick(); // 返回 [-2, -2]
|
||||
//solution.pick(); // 返回 [0, 0]</pre>
|
||||
//
|
||||
//<p> </p>
|
||||
//
|
||||
//<p><strong>提示:</strong></p>
|
||||
//
|
||||
//<ul>
|
||||
// <li><code>1 <= rects.length <= 100</code></li>
|
||||
// <li><code>rects[i].length == 4</code></li>
|
||||
// <li><code>-10<sup>9</sup> <= a<sub>i</sub> < x<sub>i</sub> <= 10<sup>9</sup></code></li>
|
||||
// <li><code>-10<sup>9</sup> <= b<sub>i</sub> < y<sub>i</sub> <= 10<sup>9</sup></code></li>
|
||||
// <li><code>x<sub>i</sub> - a<sub>i</sub> <= 2000</code></li>
|
||||
// <li><code>y<sub>i</sub> - b<sub>i</sub> <= 2000</code></li>
|
||||
// <li>所有的矩形不重叠。</li>
|
||||
// <li><code>pick</code> 最多被调用 <code>10<sup>4</sup></code> 次。</li>
|
||||
//</ul>
|
||||
//<div><div>Related Topics</div><div><li>水塘抽样</li><li>数学</li><li>二分查找</li><li>有序集合</li><li>前缀和</li><li>随机化</li></div></div><br><div><li>👍 98</li><li>👎 0</li></div>
|
||||
package leetcode.editor.cn;
|
||||
|
||||
import java.util.Random;
|
||||
|
||||
// 497:非重叠矩形中的随机点
|
||||
public class RandomPointInNonOverlappingRectangles {
|
||||
public static void main(String[] args) {
|
||||
// TO TEST
|
||||
}
|
||||
|
||||
//leetcode submit region begin(Prohibit modification and deletion)
|
||||
class Solution {
|
||||
int[][] rects;
|
||||
int[] mul;
|
||||
int count;
|
||||
Random random = new Random();
|
||||
|
||||
public Solution(int[][] rects) {
|
||||
this.rects = rects;
|
||||
count = this.rects.length;
|
||||
mul = new int[count + 1];
|
||||
for (int i = 1; i <= count; i++) {
|
||||
mul[i] = mul[i - 1] + (this.rects[i - 1][2] - this.rects[i - 1][0] + 1) *
|
||||
(this.rects[i - 1][3] - this.rects[i - 1][1] + 1);
|
||||
}
|
||||
}
|
||||
|
||||
public int[] pick() {
|
||||
int index = random.nextInt(mul[count]) + 1;
|
||||
int left = 0;
|
||||
int right = count;
|
||||
while (left < right) {
|
||||
int mid = left + right >> 1;
|
||||
if (mul[mid] >= index) {
|
||||
right = mid;
|
||||
} else {
|
||||
left = mid + 1;
|
||||
}
|
||||
}
|
||||
return new int[]{
|
||||
random.nextInt(rects[right - 1][2] - rects[right - 1][0] + 1) + rects[right - 1][0],
|
||||
random.nextInt(rects[right - 1][3] - rects[right - 1][1] + 1) + rects[right - 1][1]
|
||||
};
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Your Solution object will be instantiated and called as such:
|
||||
* Solution obj = new Solution(rects);
|
||||
* int[] param_1 = obj.pick();
|
||||
*/
|
||||
//leetcode submit region end(Prohibit modification and deletion)
|
||||
|
||||
}
|
@ -0,0 +1,52 @@
|
||||
<p>给定一个由非重叠的轴对齐矩形的数组 <code>rects</code> ,其中 <code>rects[i] = [ai, bi, xi, yi]</code> 表示 <code>(ai, bi)</code> 是第 <code>i</code> 个矩形的左下角点,<code>(xi, yi)</code> 是第 <code>i</code> 个矩形的右上角点。设计一个算法来随机挑选一个被某一矩形覆盖的整数点。矩形周长上的点也算做是被矩形覆盖。所有满足要求的点必须等概率被返回。</p>
|
||||
|
||||
<p>在给定的矩形覆盖的空间内的任何整数点都有可能被返回。</p>
|
||||
|
||||
<p><strong>请注意 </strong>,整数点是具有整数坐标的点。</p>
|
||||
|
||||
<p>实现 <code>Solution</code> 类:</p>
|
||||
|
||||
<ul>
|
||||
<li><code>Solution(int[][] rects)</code> 用给定的矩形数组 <code>rects</code> 初始化对象。</li>
|
||||
<li><code>int[] pick()</code> 返回一个随机的整数点 <code>[u, v]</code> 在给定的矩形所覆盖的空间内。</li>
|
||||
</ul>
|
||||
|
||||
<ol>
|
||||
</ol>
|
||||
|
||||
<p> </p>
|
||||
|
||||
<p><strong>示例 1:</strong></p>
|
||||
|
||||
<p><img src="https://assets.leetcode.com/uploads/2021/07/24/lc-pickrandomrec.jpg" style="height: 539px; width: 419px;" /></p>
|
||||
|
||||
<pre>
|
||||
<strong>输入:
|
||||
</strong>["Solution", "pick", "pick", "pick", "pick", "pick"]
|
||||
[[[[-2, -2, 1, 1], [2, 2, 4, 6]]], [], [], [], [], []]
|
||||
<strong>输出:
|
||||
</strong>[null, [1, -2], [1, -1], [-1, -2], [-2, -2], [0, 0]]
|
||||
|
||||
<strong>解释:</strong>
|
||||
Solution solution = new Solution([[-2, -2, 1, 1], [2, 2, 4, 6]]);
|
||||
solution.pick(); // 返回 [1, -2]
|
||||
solution.pick(); // 返回 [1, -1]
|
||||
solution.pick(); // 返回 [-1, -2]
|
||||
solution.pick(); // 返回 [-2, -2]
|
||||
solution.pick(); // 返回 [0, 0]</pre>
|
||||
|
||||
<p> </p>
|
||||
|
||||
<p><strong>提示:</strong></p>
|
||||
|
||||
<ul>
|
||||
<li><code>1 <= rects.length <= 100</code></li>
|
||||
<li><code>rects[i].length == 4</code></li>
|
||||
<li><code>-10<sup>9</sup> <= a<sub>i</sub> < x<sub>i</sub> <= 10<sup>9</sup></code></li>
|
||||
<li><code>-10<sup>9</sup> <= b<sub>i</sub> < y<sub>i</sub> <= 10<sup>9</sup></code></li>
|
||||
<li><code>x<sub>i</sub> - a<sub>i</sub> <= 2000</code></li>
|
||||
<li><code>y<sub>i</sub> - b<sub>i</sub> <= 2000</code></li>
|
||||
<li>所有的矩形不重叠。</li>
|
||||
<li><code>pick</code> 最多被调用 <code>10<sup>4</sup></code> 次。</li>
|
||||
</ul>
|
||||
<div><div>Related Topics</div><div><li>水塘抽样</li><li>数学</li><li>二分查找</li><li>有序集合</li><li>前缀和</li><li>随机化</li></div></div><br><div><li>👍 98</li><li>👎 0</li></div>
|
Loading…
Reference in New Issue
Block a user