315:计算右侧小于当前元素的个数
This commit is contained in:
parent
8c6aeafc53
commit
5e99be931f
@ -0,0 +1,105 @@
|
||||
//给定一个整数数组 nums,按要求返回一个新数组 counts。数组 counts 有该性质: counts[i] 的值是 nums[i] 右侧小于 num
|
||||
//s[i] 的元素的数量。
|
||||
//
|
||||
//
|
||||
//
|
||||
// 示例:
|
||||
//
|
||||
// 输入:nums = [5,2,6,1]
|
||||
//输出:[2,1,1,0]
|
||||
//解释:
|
||||
//5 的右侧有 2 个更小的元素 (2 和 1)
|
||||
//2 的右侧仅有 1 个更小的元素 (1)
|
||||
//6 的右侧有 1 个更小的元素 (1)
|
||||
//1 的右侧有 0 个更小的元素
|
||||
//
|
||||
//
|
||||
//
|
||||
//
|
||||
// 提示:
|
||||
//
|
||||
//
|
||||
// 0 <= nums.length <= 10^5
|
||||
// -10^4 <= nums[i] <= 10^4
|
||||
//
|
||||
// Related Topics 树状数组 线段树 数组 二分查找 分治 有序集合 归并排序
|
||||
// 👍 615 👎 0
|
||||
|
||||
package leetcode.editor.cn;
|
||||
|
||||
import java.util.*;
|
||||
|
||||
//315:计算右侧小于当前元素的个数
|
||||
class CountOfSmallerNumbersAfterSelf {
|
||||
public static void main(String[] args) {
|
||||
//测试代码
|
||||
Solution solution = new CountOfSmallerNumbersAfterSelf().new Solution();
|
||||
System.out.println(solution.countSmaller(new int[]{1,-3,-2}));
|
||||
}
|
||||
|
||||
//力扣代码
|
||||
//leetcode submit region begin(Prohibit modification and deletion)
|
||||
class Solution {
|
||||
private int[] c;
|
||||
private int[] a;
|
||||
|
||||
public List<Integer> countSmaller(int[] nums) {
|
||||
List<Integer> resultList = new ArrayList<Integer>();
|
||||
discretization(nums);
|
||||
init(nums.length + 5);
|
||||
for (int i = nums.length - 1; i >= 0; --i) {
|
||||
int id = getId(nums[i]);
|
||||
resultList.add(query(id - 1));
|
||||
update(id);
|
||||
}
|
||||
Collections.reverse(resultList);
|
||||
return resultList;
|
||||
}
|
||||
|
||||
private void init(int length) {
|
||||
c = new int[length];
|
||||
Arrays.fill(c, 0);
|
||||
}
|
||||
|
||||
private int lowBit(int x) {
|
||||
return x & (-x);
|
||||
}
|
||||
|
||||
private void update(int pos) {
|
||||
while (pos < c.length) {
|
||||
c[pos] += 1;
|
||||
pos += lowBit(pos);
|
||||
}
|
||||
}
|
||||
|
||||
private int query(int pos) {
|
||||
int ret = 0;
|
||||
while (pos > 0) {
|
||||
ret += c[pos];
|
||||
pos -= lowBit(pos);
|
||||
}
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
private void discretization(int[] nums) {
|
||||
Set<Integer> set = new HashSet<Integer>();
|
||||
for (int num : nums) {
|
||||
set.add(num);
|
||||
}
|
||||
int size = set.size();
|
||||
a = new int[size];
|
||||
int index = 0;
|
||||
for (int num : set) {
|
||||
a[index++] = num;
|
||||
}
|
||||
Arrays.sort(a);
|
||||
}
|
||||
|
||||
private int getId(int x) {
|
||||
return Arrays.binarySearch(a, x) + 1;
|
||||
}
|
||||
}
|
||||
//leetcode submit region end(Prohibit modification and deletion)
|
||||
|
||||
}
|
@ -0,0 +1,24 @@
|
||||
<p>给定一个整数数组 <em>nums</em>,按要求返回一个新数组 <em>counts</em>。数组 <em>counts</em> 有该性质: <code>counts[i]</code> 的值是 <code>nums[i]</code> 右侧小于 <code>nums[i]</code> 的元素的数量。</p>
|
||||
|
||||
<p> </p>
|
||||
|
||||
<p><strong>示例:</strong></p>
|
||||
|
||||
<pre><strong>输入:</strong>nums = [5,2,6,1]
|
||||
<strong>输出:</strong><code>[2,1,1,0]
|
||||
<strong>解释:</strong></code>
|
||||
5 的右侧有 <strong>2 </strong>个更小的元素 (2 和 1)
|
||||
2 的右侧仅有 <strong>1 </strong>个更小的元素 (1)
|
||||
6 的右侧有 <strong>1 </strong>个更小的元素 (1)
|
||||
1 的右侧有 <strong>0 </strong>个更小的元素
|
||||
</pre>
|
||||
|
||||
<p> </p>
|
||||
|
||||
<p><strong>提示:</strong></p>
|
||||
|
||||
<ul>
|
||||
<li><code>0 <= nums.length <= 10^5</code></li>
|
||||
<li><code>-10^4 <= nums[i] <= 10^4</code></li>
|
||||
</ul>
|
||||
<div><div>Related Topics</div><div><li>树状数组</li><li>线段树</li><li>数组</li><li>二分查找</li><li>分治</li><li>有序集合</li><li>归并排序</li></div></div>\n<div><li>👍 615</li><li>👎 0</li></div>
|
Loading…
Reference in New Issue
Block a user