673:最长递增子序列的个数

This commit is contained in:
huangge1199 2021-08-20 16:43:00 +08:00
parent bb26954e7a
commit 357b0f8802

View File

@ -0,0 +1,69 @@
//给定一个未排序的整数数组找到最长递增子序列的个数
//
// 示例 1:
//
//
//输入: [1,3,5,4,7]
//输出: 2
//解释: 有两个最长递增子序列分别是 [1, 3, 4, 7] [1, 3, 5, 7]
//
//
// 示例 2:
//
//
//输入: [2,2,2,2,2]
//输出: 5
//解释: 最长递增子序列的长度是1并且存在5个子序列的长度为1因此输出5
//
//
// 注意: 给定的数组长度不超过 2000 并且结果一定是32位有符号整数
// Related Topics 树状数组 线段树 数组 动态规划 👍 352 👎 0
package leetcode.editor.cn;
import java.util.Arrays;
//673:最长递增子序列的个数
class NumberOfLongestIncreasingSubsequence {
public static void main(String[] args) {
//测试代码
Solution solution = new NumberOfLongestIncreasingSubsequence().new Solution();
}
//力扣代码
//leetcode submit region begin(Prohibit modification and deletion)
class Solution {
public int findNumberOfLIS(int[] nums) {
int N = nums.length;
if (N <= 1) return N;
int[] lengths = new int[N];
int[] counts = new int[N];
Arrays.fill(counts, 1);
for (int j = 0; j < N; ++j) {
for (int i = 0; i < j; ++i) {
if (nums[i] < nums[j]) {
if (lengths[i] >= lengths[j]) {
lengths[j] = lengths[i] + 1;
counts[j] = counts[i];
} else if (lengths[i] + 1 == lengths[j]) {
counts[j] += counts[i];
}
}
}
}
int longest = 0, ans = 0;
for (int length : lengths) {
longest = Math.max(longest, length);
}
for (int i = 0; i < N; ++i) {
if (lengths[i] == longest) {
ans += counts[i];
}
}
return ans;
}
}
//leetcode submit region end(Prohibit modification and deletion)
}