69 lines
2.1 KiB
Java
69 lines
2.1 KiB
Java
|
//给定一个未排序的整数数组,找到最长递增子序列的个数。
|
|||
|
//
|
|||
|
// 示例 1:
|
|||
|
//
|
|||
|
//
|
|||
|
//输入: [1,3,5,4,7]
|
|||
|
//输出: 2
|
|||
|
//解释: 有两个最长递增子序列,分别是 [1, 3, 4, 7] 和[1, 3, 5, 7]。
|
|||
|
//
|
|||
|
//
|
|||
|
// 示例 2:
|
|||
|
//
|
|||
|
//
|
|||
|
//输入: [2,2,2,2,2]
|
|||
|
//输出: 5
|
|||
|
//解释: 最长递增子序列的长度是1,并且存在5个子序列的长度为1,因此输出5。
|
|||
|
//
|
|||
|
//
|
|||
|
// 注意: 给定的数组长度不超过 2000 并且结果一定是32位有符号整数。
|
|||
|
// Related Topics 树状数组 线段树 数组 动态规划 👍 352 👎 0
|
|||
|
|
|||
|
package leetcode.editor.cn;
|
|||
|
|
|||
|
import java.util.Arrays;
|
|||
|
|
|||
|
//673:最长递增子序列的个数
|
|||
|
class NumberOfLongestIncreasingSubsequence {
|
|||
|
public static void main(String[] args) {
|
|||
|
//测试代码
|
|||
|
Solution solution = new NumberOfLongestIncreasingSubsequence().new Solution();
|
|||
|
}
|
|||
|
|
|||
|
//力扣代码
|
|||
|
//leetcode submit region begin(Prohibit modification and deletion)
|
|||
|
class Solution {
|
|||
|
|
|||
|
public int findNumberOfLIS(int[] nums) {
|
|||
|
int N = nums.length;
|
|||
|
if (N <= 1) return N;
|
|||
|
int[] lengths = new int[N];
|
|||
|
int[] counts = new int[N];
|
|||
|
Arrays.fill(counts, 1);
|
|||
|
for (int j = 0; j < N; ++j) {
|
|||
|
for (int i = 0; i < j; ++i) {
|
|||
|
if (nums[i] < nums[j]) {
|
|||
|
if (lengths[i] >= lengths[j]) {
|
|||
|
lengths[j] = lengths[i] + 1;
|
|||
|
counts[j] = counts[i];
|
|||
|
} else if (lengths[i] + 1 == lengths[j]) {
|
|||
|
counts[j] += counts[i];
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
int longest = 0, ans = 0;
|
|||
|
for (int length : lengths) {
|
|||
|
longest = Math.max(longest, length);
|
|||
|
}
|
|||
|
for (int i = 0; i < N; ++i) {
|
|||
|
if (lengths[i] == longest) {
|
|||
|
ans += counts[i];
|
|||
|
}
|
|||
|
}
|
|||
|
return ans;
|
|||
|
}
|
|||
|
}
|
|||
|
//leetcode submit region end(Prohibit modification and deletion)
|
|||
|
|
|||
|
}
|