165 lines
5.3 KiB
Java
165 lines
5.3 KiB
Java
|
//中位数是有序序列最中间的那个数。如果序列的长度是偶数,则没有最中间的数;此时中位数是最中间的两个数的平均数。
|
|||
|
//
|
|||
|
// 例如:
|
|||
|
//
|
|||
|
//
|
|||
|
// [2,3,4],中位数是 3
|
|||
|
// [2,3],中位数是 (2 + 3) / 2 = 2.5
|
|||
|
//
|
|||
|
//
|
|||
|
// 给你一个数组 nums,有一个长度为 k 的窗口从最左端滑动到最右端。窗口中有 k 个数,每次窗口向右移动 1 位。你的任务是找出每次窗口移动后得到的新窗
|
|||
|
//口中元素的中位数,并输出由它们组成的数组。
|
|||
|
//
|
|||
|
//
|
|||
|
//
|
|||
|
// 示例:
|
|||
|
//
|
|||
|
// 给出 nums = [1,3,-1,-3,5,3,6,7],以及 k = 3。
|
|||
|
//
|
|||
|
//
|
|||
|
//窗口位置 中位数
|
|||
|
//--------------- -----
|
|||
|
//[1 3 -1] -3 5 3 6 7 1
|
|||
|
// 1 [3 -1 -3] 5 3 6 7 -1
|
|||
|
// 1 3 [-1 -3 5] 3 6 7 -1
|
|||
|
// 1 3 -1 [-3 5 3] 6 7 3
|
|||
|
// 1 3 -1 -3 [5 3 6] 7 5
|
|||
|
// 1 3 -1 -3 5 [3 6 7] 6
|
|||
|
//
|
|||
|
//
|
|||
|
// 因此,返回该滑动窗口的中位数数组 [1,-1,-1,3,5,6]。
|
|||
|
//
|
|||
|
//
|
|||
|
//
|
|||
|
// 提示:
|
|||
|
//
|
|||
|
//
|
|||
|
// 你可以假设 k 始终有效,即:k 始终小于等于输入的非空数组的元素个数。
|
|||
|
// 与真实值误差在 10 ^ -5 以内的答案将被视作正确答案。
|
|||
|
//
|
|||
|
// Related Topics 数组 哈希表 滑动窗口 堆(优先队列)
|
|||
|
// 👍 304 👎 0
|
|||
|
|
|||
|
package leetcode.editor.cn;
|
|||
|
|
|||
|
import java.util.Comparator;
|
|||
|
import java.util.HashMap;
|
|||
|
import java.util.Map;
|
|||
|
import java.util.PriorityQueue;
|
|||
|
|
|||
|
//480:滑动窗口中位数
|
|||
|
class SlidingWindowMedian {
|
|||
|
public static void main(String[] args) {
|
|||
|
//测试代码
|
|||
|
Solution solution = new SlidingWindowMedian().new Solution();
|
|||
|
}
|
|||
|
|
|||
|
//力扣代码
|
|||
|
//leetcode submit region begin(Prohibit modification and deletion)
|
|||
|
class Solution {
|
|||
|
public double[] medianSlidingWindow(int[] nums, int k) {
|
|||
|
DualHeap dh = new DualHeap(k);
|
|||
|
for (int i = 0; i < k; ++i) {
|
|||
|
dh.insert(nums[i]);
|
|||
|
}
|
|||
|
double[] ans = new double[nums.length - k + 1];
|
|||
|
ans[0] = dh.getMedian();
|
|||
|
for (int i = k; i < nums.length; ++i) {
|
|||
|
dh.insert(nums[i]);
|
|||
|
dh.erase(nums[i - k]);
|
|||
|
ans[i - k + 1] = dh.getMedian();
|
|||
|
}
|
|||
|
return ans;
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
class DualHeap {
|
|||
|
// 大根堆,维护较小的一半元素
|
|||
|
private PriorityQueue<Integer> small;
|
|||
|
// 小根堆,维护较大的一半元素
|
|||
|
private PriorityQueue<Integer> large;
|
|||
|
// 哈希表,记录「延迟删除」的元素,key 为元素,value 为需要删除的次数
|
|||
|
private Map<Integer, Integer> delayed;
|
|||
|
|
|||
|
private int k;
|
|||
|
// small 和 large 当前包含的元素个数,需要扣除被「延迟删除」的元素
|
|||
|
private int smallSize, largeSize;
|
|||
|
|
|||
|
public DualHeap(int k) {
|
|||
|
this.small = new PriorityQueue<>(Comparator.reverseOrder());
|
|||
|
this.large = new PriorityQueue<>(Comparator.naturalOrder());
|
|||
|
this.delayed = new HashMap<Integer, Integer>();
|
|||
|
this.k = k;
|
|||
|
this.smallSize = 0;
|
|||
|
this.largeSize = 0;
|
|||
|
}
|
|||
|
|
|||
|
public double getMedian() {
|
|||
|
return (k & 1) == 1 ? small.peek() : ((double) small.peek() + large.peek()) / 2;
|
|||
|
}
|
|||
|
|
|||
|
public void insert(int num) {
|
|||
|
if (small.isEmpty() || num <= small.peek()) {
|
|||
|
small.offer(num);
|
|||
|
++smallSize;
|
|||
|
} else {
|
|||
|
large.offer(num);
|
|||
|
++largeSize;
|
|||
|
}
|
|||
|
makeBalance();
|
|||
|
}
|
|||
|
|
|||
|
public void erase(int num) {
|
|||
|
delayed.put(num, delayed.getOrDefault(num, 0) + 1);
|
|||
|
if (num <= small.peek()) {
|
|||
|
--smallSize;
|
|||
|
if (num == small.peek()) {
|
|||
|
prune(small);
|
|||
|
}
|
|||
|
} else {
|
|||
|
--largeSize;
|
|||
|
if (num == large.peek()) {
|
|||
|
prune(large);
|
|||
|
}
|
|||
|
}
|
|||
|
makeBalance();
|
|||
|
}
|
|||
|
|
|||
|
// 不断地弹出 heap 的堆顶元素,并且更新哈希表
|
|||
|
private void prune(PriorityQueue<Integer> heap) {
|
|||
|
while (!heap.isEmpty()) {
|
|||
|
int num = heap.peek();
|
|||
|
if (delayed.containsKey(num)) {
|
|||
|
delayed.put(num, delayed.get(num) - 1);
|
|||
|
if (delayed.get(num) == 0) {
|
|||
|
delayed.remove(num);
|
|||
|
}
|
|||
|
heap.poll();
|
|||
|
} else {
|
|||
|
break;
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
// 调整 small 和 large 中的元素个数,使得二者的元素个数满足要求
|
|||
|
private void makeBalance() {
|
|||
|
if (smallSize > largeSize + 1) {
|
|||
|
// small 比 large 元素多 2 个
|
|||
|
large.offer(small.poll());
|
|||
|
--smallSize;
|
|||
|
++largeSize;
|
|||
|
// small 堆顶元素被移除,需要进行 prune
|
|||
|
prune(small);
|
|||
|
} else if (smallSize < largeSize) {
|
|||
|
// large 比 small 元素多 1 个
|
|||
|
small.offer(large.poll());
|
|||
|
++smallSize;
|
|||
|
--largeSize;
|
|||
|
// large 堆顶元素被移除,需要进行 prune
|
|||
|
prune(large);
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
//leetcode submit region end(Prohibit modification and deletion)
|
|||
|
|
|||
|
}
|