60 lines
2.0 KiB
Markdown
60 lines
2.0 KiB
Markdown
|
<p>请考虑一棵二叉树上所有的叶子,这些叶子的值按从左到右的顺序排列形成一个 <em>叶值序列</em> 。</p>
|
|||
|
|
|||
|
<p><img alt="" src="https://s3-lc-upload.s3.amazonaws.com/uploads/2018/07/16/tree.png" style="height: 240px; width: 300px;" /></p>
|
|||
|
|
|||
|
<p>举个例子,如上图所示,给定一棵叶值序列为 <code>(6, 7, 4, 9, 8)</code> 的树。</p>
|
|||
|
|
|||
|
<p>如果有两棵二叉树的叶值序列是相同,那么我们就认为它们是 <em>叶相似 </em>的。</p>
|
|||
|
|
|||
|
<p>如果给定的两个根结点分别为 <code>root1</code> 和 <code>root2</code> 的树是叶相似的,则返回 <code>true</code>;否则返回 <code>false</code> 。</p>
|
|||
|
|
|||
|
<p> </p>
|
|||
|
|
|||
|
<p><strong>示例 1:</strong></p>
|
|||
|
|
|||
|
<p><img alt="" src="https://assets.leetcode.com/uploads/2020/09/03/leaf-similar-1.jpg" style="height: 297px; width: 750px;" /></p>
|
|||
|
|
|||
|
<pre>
|
|||
|
<strong>输入:</strong>root1 = [3,5,1,6,2,9,8,null,null,7,4], root2 = [3,5,1,6,7,4,2,null,null,null,null,null,null,9,8]
|
|||
|
<strong>输出:</strong>true
|
|||
|
</pre>
|
|||
|
|
|||
|
<p><strong>示例 2:</strong></p>
|
|||
|
|
|||
|
<pre>
|
|||
|
<strong>输入:</strong>root1 = [1], root2 = [1]
|
|||
|
<strong>输出:</strong>true
|
|||
|
</pre>
|
|||
|
|
|||
|
<p><strong>示例 3:</strong></p>
|
|||
|
|
|||
|
<pre>
|
|||
|
<strong>输入:</strong>root1 = [1], root2 = [2]
|
|||
|
<strong>输出:</strong>false
|
|||
|
</pre>
|
|||
|
|
|||
|
<p><strong>示例 4:</strong></p>
|
|||
|
|
|||
|
<pre>
|
|||
|
<strong>输入:</strong>root1 = [1,2], root2 = [2,2]
|
|||
|
<strong>输出:</strong>true
|
|||
|
</pre>
|
|||
|
|
|||
|
<p><strong>示例 5:</strong></p>
|
|||
|
|
|||
|
<p><img alt="" src="https://assets.leetcode.com/uploads/2020/09/03/leaf-similar-2.jpg" style="height: 165px; width: 450px;" /></p>
|
|||
|
|
|||
|
<pre>
|
|||
|
<strong>输入:</strong>root1 = [1,2,3], root2 = [1,3,2]
|
|||
|
<strong>输出:</strong>false
|
|||
|
</pre>
|
|||
|
|
|||
|
<p> </p>
|
|||
|
|
|||
|
<p><strong>提示:</strong></p>
|
|||
|
|
|||
|
<ul>
|
|||
|
<li>给定的两棵树可能会有 <code>1</code> 到 <code>200</code> 个结点。</li>
|
|||
|
<li>给定的两棵树上的值介于 <code>0</code> 到 <code>200</code> 之间。</li>
|
|||
|
</ul>
|
|||
|
<div><div>Related Topics</div><div><li>树</li><li>深度优先搜索</li></div></div>\n<div><li>👍 129</li><li>👎 0</li></div>
|