65 lines
1.7 KiB
Java
65 lines
1.7 KiB
Java
|
//给你一个字符串 s ,找出其中最长的回文子序列,并返回该序列的长度。
|
|||
|
//
|
|||
|
// 子序列定义为:不改变剩余字符顺序的情况下,删除某些字符或者不删除任何字符形成的一个序列。
|
|||
|
//
|
|||
|
//
|
|||
|
//
|
|||
|
// 示例 1:
|
|||
|
//
|
|||
|
//
|
|||
|
//输入:s = "bbbab"
|
|||
|
//输出:4
|
|||
|
//解释:一个可能的最长回文子序列为 "bbbb" 。
|
|||
|
//
|
|||
|
//
|
|||
|
// 示例 2:
|
|||
|
//
|
|||
|
//
|
|||
|
//输入:s = "cbbd"
|
|||
|
//输出:2
|
|||
|
//解释:一个可能的最长回文子序列为 "bb" 。
|
|||
|
//
|
|||
|
//
|
|||
|
//
|
|||
|
//
|
|||
|
// 提示:
|
|||
|
//
|
|||
|
//
|
|||
|
// 1 <= s.length <= 1000
|
|||
|
// s 仅由小写英文字母组成
|
|||
|
//
|
|||
|
// Related Topics 字符串 动态规划
|
|||
|
// 👍 508 👎 0
|
|||
|
|
|||
|
package leetcode.editor.cn;
|
|||
|
|
|||
|
//516:最长回文子序列
|
|||
|
class LongestPalindromicSubsequence {
|
|||
|
public static void main(String[] args) {
|
|||
|
//测试代码
|
|||
|
Solution solution = new LongestPalindromicSubsequence().new Solution();
|
|||
|
System.out.println(solution.longestPalindromeSubseq("bbbab"));
|
|||
|
}
|
|||
|
|
|||
|
//力扣代码
|
|||
|
//leetcode submit region begin(Prohibit modification and deletion)
|
|||
|
class Solution {
|
|||
|
public int longestPalindromeSubseq(String s) {
|
|||
|
int length = s.length();
|
|||
|
int[][] dp = new int[length][length];
|
|||
|
for (int i = length - 1; i >= 0; i--) {
|
|||
|
dp[i][i] = 1;
|
|||
|
for (int j = i + 1; j < length; j++) {
|
|||
|
if (s.charAt(i) == s.charAt(j)) {
|
|||
|
dp[i][j] = dp[i + 1][j - 1] + 2;
|
|||
|
} else {
|
|||
|
dp[i][j] = Math.max(dp[i + 1][j], dp[i][j - 1]);
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
return dp[0][length - 1];
|
|||
|
}
|
|||
|
}
|
|||
|
//leetcode submit region end(Prohibit modification and deletion)
|
|||
|
|
|||
|
}
|