leet-code/src/main/java/leetcode/editor/cn/DuiLieDeZuiDaZhiLcof.java

81 lines
1.8 KiB
Java
Raw Normal View History

//请定义一个队列并实现函数 max_value 得到队列里的最大值要求函数max_value、push_back 和 pop_front 的均摊时间复杂度都
//是O(1)。
//
// 若队列为空pop_front 和 max_value 需要返回 -1
//
// 示例 1
//
// 输入:
//["MaxQueue","push_back","push_back","max_value","pop_front","max_value"]
//[[],[1],[2],[],[],[]]
//输出: [null,null,null,2,1,2]
//
//
// 示例 2
//
// 输入:
//["MaxQueue","pop_front","max_value"]
//[[],[],[]]
//输出: [null,-1,-1]
//
//
//
//
// 限制:
//
//
// 1 <= push_back,pop_front,max_value的总操作数 <= 10000
// 1 <= value <= 10^5
//
// Related Topics 栈 Sliding Window
// 👍 248 👎 0
package leetcode.editor.cn;
//剑指 Offer 59 - II:队列的最大值
public class DuiLieDeZuiDaZhiLcof {
public static void main(String[] args) {
//测试代码
// Solution solution = new DuiLieDeZuiDaZhiLcof().new Solution();
}
//力扣代码
//leetcode submit region begin(Prohibit modification and deletion)
class MaxQueue {
int[] arr = new int[20000];
int start = 0, end = 0;
public MaxQueue() {
}
public int max_value() {
int ans = -1;
for (int i = start; i != end; ++i) {
ans = Math.max(ans, arr[i]);
}
return ans;
}
public void push_back(int value) {
arr[end++] = value;
}
public int pop_front() {
if (start == end) {
return -1;
}
return arr[start++];
}
}
/**
* Your MaxQueue object will be instantiated and called as such:
* MaxQueue obj = new MaxQueue();
* int param_1 = obj.max_value();
* obj.push_back(value);
* int param_3 = obj.pop_front();
*/
//leetcode submit region end(Prohibit modification and deletion)
}