动态规划(基础版)-- 斐波那契类型 -- 斐波那契数
This commit is contained in:
parent
355f4db077
commit
0abe63dc40
@ -0,0 +1,62 @@
|
|||||||
|
//<p><strong>斐波那契数</strong> (通常用 <code>F(n)</code> 表示)形成的序列称为 <strong>斐波那契数列</strong> 。该数列由 <code>0</code> 和 <code>1</code> 开始,后面的每一项数字都是前面两项数字的和。也就是:</p>
|
||||||
|
//
|
||||||
|
//<pre>
|
||||||
|
//F(0) = 0,F(1) = 1
|
||||||
|
//F(n) = F(n - 1) + F(n - 2),其中 n > 1
|
||||||
|
//</pre>
|
||||||
|
//
|
||||||
|
//<p>给定 <code>n</code> ,请计算 <code>F(n)</code> 。</p>
|
||||||
|
//
|
||||||
|
//<p> </p>
|
||||||
|
//
|
||||||
|
//<p><strong>示例 1:</strong></p>
|
||||||
|
//
|
||||||
|
//<pre>
|
||||||
|
//<strong>输入:</strong>n = 2
|
||||||
|
//<strong>输出:</strong>1
|
||||||
|
//<strong>解释:</strong>F(2) = F(1) + F(0) = 1 + 0 = 1
|
||||||
|
//</pre>
|
||||||
|
//
|
||||||
|
//<p><strong>示例 2:</strong></p>
|
||||||
|
//
|
||||||
|
//<pre>
|
||||||
|
//<strong>输入:</strong>n = 3
|
||||||
|
//<strong>输出:</strong>2
|
||||||
|
//<strong>解释:</strong>F(3) = F(2) + F(1) = 1 + 1 = 2
|
||||||
|
//</pre>
|
||||||
|
//
|
||||||
|
//<p><strong>示例 3:</strong></p>
|
||||||
|
//
|
||||||
|
//<pre>
|
||||||
|
//<strong>输入:</strong>n = 4
|
||||||
|
//<strong>输出:</strong>3
|
||||||
|
//<strong>解释:</strong>F(4) = F(3) + F(2) = 2 + 1 = 3
|
||||||
|
//</pre>
|
||||||
|
//
|
||||||
|
//<p> </p>
|
||||||
|
//
|
||||||
|
//<p><strong>提示:</strong></p>
|
||||||
|
//
|
||||||
|
//<ul>
|
||||||
|
// <li><code>0 <= n <= 30</code></li>
|
||||||
|
//</ul>
|
||||||
|
//
|
||||||
|
//<div><div>Related Topics</div><div><li>递归</li><li>记忆化搜索</li><li>数学</li><li>动态规划</li></div></div><br><div><li>👍 697</li><li>👎 0</li></div>
|
||||||
|
package leetcode.editor.cn;
|
||||||
|
|
||||||
|
// 509:斐波那契数
|
||||||
|
public class FibonacciNumber {
|
||||||
|
public static void main(String[] args) {
|
||||||
|
Solution solution = new FibonacciNumber().new Solution();
|
||||||
|
// TO TEST
|
||||||
|
}
|
||||||
|
|
||||||
|
//leetcode submit region begin(Prohibit modification and deletion)
|
||||||
|
class Solution {
|
||||||
|
public int fib(int n) {
|
||||||
|
return n < 2 ? n : fib(n - 1) + fib(n - 2);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
//leetcode submit region end(Prohibit modification and deletion)
|
||||||
|
|
||||||
|
}
|
@ -0,0 +1,44 @@
|
|||||||
|
<p><strong>斐波那契数</strong> (通常用 <code>F(n)</code> 表示)形成的序列称为 <strong>斐波那契数列</strong> 。该数列由 <code>0</code> 和 <code>1</code> 开始,后面的每一项数字都是前面两项数字的和。也就是:</p>
|
||||||
|
|
||||||
|
<pre>
|
||||||
|
F(0) = 0,F(1) = 1
|
||||||
|
F(n) = F(n - 1) + F(n - 2),其中 n > 1
|
||||||
|
</pre>
|
||||||
|
|
||||||
|
<p>给定 <code>n</code> ,请计算 <code>F(n)</code> 。</p>
|
||||||
|
|
||||||
|
<p> </p>
|
||||||
|
|
||||||
|
<p><strong>示例 1:</strong></p>
|
||||||
|
|
||||||
|
<pre>
|
||||||
|
<strong>输入:</strong>n = 2
|
||||||
|
<strong>输出:</strong>1
|
||||||
|
<strong>解释:</strong>F(2) = F(1) + F(0) = 1 + 0 = 1
|
||||||
|
</pre>
|
||||||
|
|
||||||
|
<p><strong>示例 2:</strong></p>
|
||||||
|
|
||||||
|
<pre>
|
||||||
|
<strong>输入:</strong>n = 3
|
||||||
|
<strong>输出:</strong>2
|
||||||
|
<strong>解释:</strong>F(3) = F(2) + F(1) = 1 + 1 = 2
|
||||||
|
</pre>
|
||||||
|
|
||||||
|
<p><strong>示例 3:</strong></p>
|
||||||
|
|
||||||
|
<pre>
|
||||||
|
<strong>输入:</strong>n = 4
|
||||||
|
<strong>输出:</strong>3
|
||||||
|
<strong>解释:</strong>F(4) = F(3) + F(2) = 2 + 1 = 3
|
||||||
|
</pre>
|
||||||
|
|
||||||
|
<p> </p>
|
||||||
|
|
||||||
|
<p><strong>提示:</strong></p>
|
||||||
|
|
||||||
|
<ul>
|
||||||
|
<li><code>0 <= n <= 30</code></li>
|
||||||
|
</ul>
|
||||||
|
|
||||||
|
<div><div>Related Topics</div><div><li>递归</li><li>记忆化搜索</li><li>数学</li><li>动态规划</li></div></div><br><div><li>👍 697</li><li>👎 0</li></div>
|
Loading…
Reference in New Issue
Block a user