动态规划(基础版)-- 斐波那契类型 -- 第 N 个泰波那契数
This commit is contained in:
parent
0abe63dc40
commit
03ba9aa8ca
@ -0,0 +1,62 @@
|
||||
//<p>泰波那契序列 T<sub>n</sub> 定义如下: </p>
|
||||
//
|
||||
//<p>T<sub>0</sub> = 0, T<sub>1</sub> = 1, T<sub>2</sub> = 1, 且在 n >= 0 的条件下 T<sub>n+3</sub> = T<sub>n</sub> + T<sub>n+1</sub> + T<sub>n+2</sub></p>
|
||||
//
|
||||
//<p>给你整数 <code>n</code>,请返回第 n 个泰波那契数 T<sub>n </sub>的值。</p>
|
||||
//
|
||||
//<p> </p>
|
||||
//
|
||||
//<p><strong>示例 1:</strong></p>
|
||||
//
|
||||
//<pre><strong>输入:</strong>n = 4
|
||||
//<strong>输出:</strong>4
|
||||
//<strong>解释:</strong>
|
||||
//T_3 = 0 + 1 + 1 = 2
|
||||
//T_4 = 1 + 1 + 2 = 4
|
||||
//</pre>
|
||||
//
|
||||
//<p><strong>示例 2:</strong></p>
|
||||
//
|
||||
//<pre><strong>输入:</strong>n = 25
|
||||
//<strong>输出:</strong>1389537
|
||||
//</pre>
|
||||
//
|
||||
//<p> </p>
|
||||
//
|
||||
//<p><strong>提示:</strong></p>
|
||||
//
|
||||
//<ul>
|
||||
// <li><code>0 <= n <= 37</code></li>
|
||||
// <li>答案保证是一个 32 位整数,即 <code>answer <= 2^31 - 1</code>。</li>
|
||||
//</ul>
|
||||
//
|
||||
//<div><div>Related Topics</div><div><li>记忆化搜索</li><li>数学</li><li>动态规划</li></div></div><br><div><li>👍 279</li><li>👎 0</li></div>
|
||||
package leetcode.editor.cn;
|
||||
|
||||
// 1137:第 N 个泰波那契数
|
||||
public class NThTribonacciNumber {
|
||||
public static void main(String[] args) {
|
||||
Solution solution = new NThTribonacciNumber().new Solution();
|
||||
// TO TEST
|
||||
}
|
||||
|
||||
//leetcode submit region begin(Prohibit modification and deletion)
|
||||
class Solution {
|
||||
public int tribonacci(int n) {
|
||||
if (n == 0) {
|
||||
return 0;
|
||||
} else if (n < 3) {
|
||||
return 1;
|
||||
}
|
||||
int[] arr = new int[n + 1];
|
||||
arr[1] = 1;
|
||||
arr[2] = 1;
|
||||
for (int i = 3; i <= n; i++) {
|
||||
arr[i] = arr[i - 1] + arr[i - 2] + arr[i - 3];
|
||||
}
|
||||
return arr[n];
|
||||
}
|
||||
}
|
||||
//leetcode submit region end(Prohibit modification and deletion)
|
||||
|
||||
}
|
@ -0,0 +1,33 @@
|
||||
<p>泰波那契序列 T<sub>n</sub> 定义如下: </p>
|
||||
|
||||
<p>T<sub>0</sub> = 0, T<sub>1</sub> = 1, T<sub>2</sub> = 1, 且在 n >= 0 的条件下 T<sub>n+3</sub> = T<sub>n</sub> + T<sub>n+1</sub> + T<sub>n+2</sub></p>
|
||||
|
||||
<p>给你整数 <code>n</code>,请返回第 n 个泰波那契数 T<sub>n </sub>的值。</p>
|
||||
|
||||
<p> </p>
|
||||
|
||||
<p><strong>示例 1:</strong></p>
|
||||
|
||||
<pre><strong>输入:</strong>n = 4
|
||||
<strong>输出:</strong>4
|
||||
<strong>解释:</strong>
|
||||
T_3 = 0 + 1 + 1 = 2
|
||||
T_4 = 1 + 1 + 2 = 4
|
||||
</pre>
|
||||
|
||||
<p><strong>示例 2:</strong></p>
|
||||
|
||||
<pre><strong>输入:</strong>n = 25
|
||||
<strong>输出:</strong>1389537
|
||||
</pre>
|
||||
|
||||
<p> </p>
|
||||
|
||||
<p><strong>提示:</strong></p>
|
||||
|
||||
<ul>
|
||||
<li><code>0 <= n <= 37</code></li>
|
||||
<li>答案保证是一个 32 位整数,即 <code>answer <= 2^31 - 1</code>。</li>
|
||||
</ul>
|
||||
|
||||
<div><div>Related Topics</div><div><li>记忆化搜索</li><li>数学</li><li>动态规划</li></div></div><br><div><li>👍 279</li><li>👎 0</li></div>
|
Loading…
Reference in New Issue
Block a user